Hereditary Spastic Paraplegia With Mental Impairment and Thin Corpus Callosum in Tunisia: SPG11, SPG15, and Further Genetic Heterogeneity | Genetics and Genomics | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
McDermott  CWhite  KBushby  KShaw  P Hereditary spastic paraparesis: a review of new developments.  J Neurol Neurosurg Psychiatry 2000;69 (2) 150- 160PubMedGoogle Scholar
2.
Harding  AE Classification of the hereditary ataxias and paraplegias.  Lancet 1983;1 (8334) 1151- 1155PubMedGoogle Scholar
3.
Behan  WMMaia  M Strumpell's familial spastic paraplegia: genetics and neuropathology.  J Neurol Neurosurg Psychiatry 1974;37 (1) 8- 20PubMedGoogle Scholar
4.
Fink  JK Hereditary spastic paraplegia.  Curr Neurol Neurosci Rep 2006;6 (1) 65- 76PubMedGoogle Scholar
5.
Valdmanis  PNMeijer  IAReynolds  A  et al.  Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia.  Am J Hum Genet 2007;80 (1) 152- 161PubMedGoogle Scholar
6.
Stevanin  GSantorelli  FMAzzedine  H  et al.  Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum.  Nat Genet 2007;39 (3) 366- 372PubMedGoogle Scholar
7.
Mannan  AUKrawen  PSauter  SM  et al.  ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia.  Am J Hum Genet 2006;79 (2) 351- 357PubMedGoogle Scholar
8.
Reid  E Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias.  J Med Genet 2003;40 (2) 81- 86PubMedGoogle Scholar
9.
França  MC  JrD'Abreu  AMaurer-Morelli  CV  et al.  Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum.  Mov Disord 2007;22 (11) 1556- 1562PubMedGoogle Scholar
10.
Ueda  MKatayama  YKamiya  T  et al.  Hereditary spastic paraplegia with a thin corpus callosum and thalamic involvement in Japan.  Neurology 1998;51 (6) 1751- 1754PubMedGoogle Scholar
11.
Shibasaki  YTanaka  HIwabuchi  K  et al.  Linkage of autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum to chromosome 15q13-15.  Ann Neurol 2000;48 (1) 108- 112PubMedGoogle Scholar
12.
De Michele  GDe Fusco  MCavalcanti  F  et al.  A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3.  Am J Hum Genet 1998;63 (1) 135- 139PubMedGoogle Scholar
13.
Casali  CValente  EMBertini  E  et al.  Clinical and genetic studies in hereditary spastic paraplegia with thin corpus callosum.  Neurology 2004;62 (2) 262- 268PubMedGoogle Scholar
14.
Hughes  CAByrne  PCWebb  S  et al.  SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q.  Neurology 2001;56 (9) 1230- 1233PubMedGoogle Scholar
15.
Simpson  MACross  HProukakis  C  et al.  Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia.  Am J Hum Genet 2003;73 (5) 1147- 1156PubMedGoogle Scholar
16.
Stevanin  GPaternotte  CCoutinho  P  et al.  A new locus for autosomal recessive spastic paraplegia (SPG32) on chromosome 14q12-q21.  Neurology 2007;68 (21) 1837- 1840PubMedGoogle Scholar
17.
Al-Yahyaee  SAl-Gazali  LIDe Jonghe  P  et al.  A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy.  Neurology 2006;66 (8) 1230- 1234PubMedGoogle Scholar
18.
Winner  BUyanik  GGross  C  et al.  Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11).  Arch Neurol 2004;61 (1) 117- 121PubMedGoogle Scholar
19.
Tang  BSChen  XZhao  GH  et al.  Clinical features of hereditary spastic paraplegia with thin corpus callosum: report of 5 Chinese cases.  Chin Med J (Engl) 2004;117 (7) 1002- 1005PubMedGoogle Scholar
20.
Lossos  AStevanin  GMeiner  V  et al.  Hereditary spastic paraplegia with thin corpus callosum: reduction of the SPG11 interval and evidence for further genetic heterogeneity.  Arch Neurol 2006;63 (5) 756- 760PubMedGoogle Scholar
21.
Nakamura  AIzumi  KUmehara  F  et al.  Familial spastic paraplegia with mental impairment and thin corpus callosum.  J Neurol Sci 1995;131 (1) 35- 42PubMedGoogle Scholar
22.
Ohnishi  JTomoda  YYokoyama  K Neuroradiological findings in hereditary spastic paraplegia with a thin corpus callosum.  Acta Neurol Scand 2001;104 (3) 191- 192PubMedGoogle Scholar
23.
Brockmann  KSimpson  MAFaber  ABonnemann  CCrosby  AHGartner  J Complicated hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) and childhood onset.  Neuropediatrics 2005;36 (4) 274- 278PubMedGoogle Scholar
24.
Stevanin  GMontagna  GAzzedine  H  et al.  Spastic paraplegia with thin corpus callosum: description of 20 new families, refinement of the SPG11 locus, candidate gene analysis and evidence of genetic heterogeneity.  Neurogenetics 2006;7 (3) 149- 156PubMedGoogle Scholar
25.
Stevanin  GAzzedine  HDenora  P  et al.  Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration [published online ahead of print December 13, 2007].  Brain PubMed10.1093/brain/awm293Google Scholar
26.
Del Bo  RDi Fonzo  AGhezzi  S  et al.  SPG11: a consistent clinical phenotype in a family with homozygous Spatacsin truncating mutation.  Neurogenetics 2007;8 (4) 301- 305PubMedGoogle Scholar
27.
Elleuch  NBouslam  NHanein  S  et al.  Refinement of the SPG15 candidate interval and phenotypic heterogeneity in three large Arab families.  Neurogenetics 2007;8 (4) 307- 315PubMedGoogle Scholar
Original Contribution
March 2008

Hereditary Spastic Paraplegia With Mental Impairment and Thin Corpus Callosum in Tunisia: SPG11, SPG15, and Further Genetic Heterogeneity

Author Affiliations

Author Affiliations: Department of Neurology, Habib Bourguiba University Hospital (Drs Boukhris, Feki, Elleuch, Miladi, and Mhiri), and the Faculté de Médecine de Sfax (Drs Boukhris, Feki, Elleuch, Miladi, and Mhiri), Sfax, and Department of Neurology, National Institute of Neurology, Tunis (Dr Belal), Tunisia; and Institut national de la santé et de la recherche médicale (INSERM) U679 (Drs Boukhris, Stevanin, Denora, and Brice and Mr Truchetto), and the Pierre and Marie Curie–Paris 6 University, UMR S679, Federative Institute for Neuroscience Research (IFR70) (Drs Boukhris, Stevanin, Denora, and Brice and Mr Truchetto), and Department of Genetics and Cytogenetics (Drs Stevanin and Brice and Ms Denis), Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France.

Arch Neurol. 2008;65(3):393-402. doi:10.1001/archneur.65.3.393
Abstract

Objective  To perform a clinical and genetic study of Tunisian families with autosomal recessive (AR) hereditary spastic paraplegia with thin corpus callosum (HSP-TCC).

Design  Linkage studies and mutation screening.

Setting  Reference Center for Neurogenetics in South and Center Tunisia.

Participants  Seventy-three subjects from 33 “apparently” unrelated Tunisian families with AR HSP.

Main Outcome Measures  Families with AR HSP-TCC were subsequently tested for linkage to the corresponding loci using microsatellite markers from the candidate intervals, followed by direct sequencing of the KIAA1840 gene in families linked to SPG11.

Results  We identified 8 Tunisian families (8 of 33 [24%]), including 19 affected patients, fulfilling the clinical criteria for HSP-TCC. In 7 families, linkage to either SPG11 (62.5%) or SPG15 (25%) was suggested by haplotype reconstruction and positive logarithm of odds score values for microsatellite markers. The identification of 2 recurrent mutations (R2034X and M245VfsX) in the SPG11 gene in 5 families validated the linkage results. The neurological and radiological findings in SPG11 and SPG15 patients were relatively similar. The remaining family, characterized by an earlier age at onset and the presence of cataracts, was excluded for linkage to the 6 known loci, suggesting further genetic heterogeneity.

Conclusions  Autosomal recessive HSP-TCC is a frequent subtype of complicated HSP in Tunisia and is clinically and genetically heterogeneous. SPG11 and SPG15 are the major loci for this entity, but at least another genetic form with unique clinical features exists.

×