[Skip to Navigation]
Sign In
Invited Commentary
August 27, 2020

Artificial Intelligence to Support Independent Assessment of Screening Mammograms—The Time Has Come

Author Affiliations
  • 1Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
JAMA Oncol. 2020;6(10):1588-1589. doi:10.1001/jamaoncol.2020.3186

Screening mammography is our best method currently available to detect breast cancer early, when it can be cured. However, global access to high-quality, affordable screening mammography is constrained by the limited supply of radiologists subspecialized in breast imaging to interpret each individual examination. The need for interpretation of each mammogram by a subspecialist not only increases costs and limits access to screening but also adds the element of human error to even the most advanced screening programs. Owing to well-documented human error and variation, there is no “diagnostic accuracy” of screening mammography but rather a wide range of performance outcomes based on the individual radiologist interpreting the mammogram. In a study of more than 1.6 million modern, all-digital screening mammograms, investigators of the Breast Cancer Surveillance Consortium found a wide range of interpretive performance across radiologists, with more than 40% of certified, specialized radiologists failing to meet recommended recall rates.1 Recognition of these challenges supported early efforts to develop deep learning models to assist humans in mammographic interpretation.2-4 However, the outcomes have been mixed, with wide variation in quantity and quality of data used for model development, variable methods to train, test, and internally and externally validate models developed, and inconsistent use of peer-reviewed publications to share discoveries.

Add or change institution
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words