IMPORTANCE Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child’s life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale.

OBJECTIVES To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis.

DESIGN, SETTING, AND PARTICIPANTS A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017.

MAIN OUTCOMES AND MEASURES Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis.

RESULTS The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]).

CONCLUSIONS AND RELEVANCE This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs.
Retinoblastoma, the most common eye cancer of childhood, is fatal if left untreated. Prognosis of patients with retinoblastoma in high-income countries (HICs) has improved over the past 50 years, now reaching a near 100% disease-free survival rate.\(^1\)\(^-\)\(^3\) This is attributed to several factors, including (1) creation of specialized referral centers, (2) decoding of the genetic basis of the disease, (3) formation of screening programs, and (4) the introduction of chemotherapy.\(^4\) In HICs, retinoblastoma is a curable disease, and attention has now shifted to eye salvage\(^5\)\(^,\)\(^6\) and improvement of quality of life.\(^7\) In low- and middle-income countries (LMICs), where more than 80% of global retinoblastoma cases arise, the prognosis is poor, and it is assumed that this is because of delayed diagnosis and treatment.\(^8\)\(^-\)\(^10\) Publications from LMICs are scarce, and many countries do not report their retinoblastoma data.\(^11\) The stage of retinoblastoma at the time of diagnosis in low-income, middle-income, and high-income countries has not been surveyed globally. This information is important for policy and health care planning at national and international levels.

The objectives of this study are to (1) report the stage at diagnosis in a large global sample of patients with retinoblastoma, (2) examine associations between clinical variables at presentation and national-income level, and (3) investigate risk factors for advanced disease at diagnosis.

Methods

This study originated from a consortium of retinoblastoma treatment centers in 8 countries on 3 continents.\(^22\) From June 2017 through December 2018, all known retinoblastoma treatment centers across the world were contacted by means of personal communications, presentations at scientific conferences, and linking to professional societies in the fields of ophthalmology and oncology to form a global network. All centers involved in the diagnosis and treatment of patients with retinoblastoma, at least by means of enucleation, were eligible to participate.

Study Design

This study adheres to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines.\(^23\) It was a 1-year cross-sectional analysis that included all treatment-naive patients with retinoblastoma who presented to participating centers from January 1, 2017, to December 31, 2017, and who were treated or offered treatment for retinoblastoma. A predesigned form was used for data collection (eTable 1 in the Supplement). The data collected included country of residence, sex, first ocular symptom as noted by parents, age at first indication of symptom, age and ocular indication at presentation to the retinoblastoma treatment center, laterality, familial history of retinoblastoma, staging according to the American Joint Committee on Cancer Staging Manual, Eighth Edition\(^14\) and the International Retinoblastoma Staging System,\(^15\) and primary treatment. Data on country of residence, sex, and laterality were minimum criteria for patient enrollment. The staging classifications were simplified to include only the major subcategories (eTable 2 in the Supplement). For the primary tumor site (cT), the eye with the more advanced disease was used for analysis. Completed forms were electronically uploaded onto a secure server, after which a data quality assurance process was performed (eMethods in the Supplement).

The study was approved by the institutional review board at the London School of Hygiene & Tropical Medicine, which granted a waiver of patient informed consent. Participating centers applied for and received ethics clearance in their countries according to local institutional guidelines.

Statistical Analysis

All analyses were performed using R software, version 3.5.2 (R Foundation for Statistical Computing), and IBM SPSS Statistics, version 25.0 (IBM Corp). The crude birth rate, country population size, and country classification by national income level were obtained from the 2017 World Population Prospects.\(^16\) The predicted number of new patients with retinoblastoma per country was calculated as follows: [country population × crude birth rate/1000/17 000], and predicted number per national income level was the sum result of all countries at the same level.

Unless otherwise indicated, summary statistics are presented as median and interquartile range (25%-75%). The t test was used to compare means of normally distributed continuous variables, Fisher exact and Pearson \(\chi^2\) tests were used to compare categorical variables, Spearman rank correlation test was used for nonnormal continuous and ordinal variables, and the Cochran-Armitage test\(^17\)\(^,\)\(^18\) was used to test for trend in the proportions of patients with a given parameter across the income levels. Binomial logistic regression was used to model the effect of income level (upper-middle-income level and high-income level combined), presentation age (grouped by tertiles), familial retinoblastoma history, sex, and bilaterality, on the likelihood of children having advanced disease (cT4) at presentation. An a level of .05 and 2-tailed \(P\) values were used to determine statistical significance.

Results

The study sample included 4351 treatment-naive patients with retinoblastoma residing in 153 countries (Figure). The data...
analyzed by national income level are shown in Table 1. Country-level and continent-level data are shown at http://globalretinoblastoma.org (password: Ret2017).

Geographic and Socioeconomic Characteristics

More than half (2276 [52.3%]) of the patients were from Asia, 1024 (23.5%) were from Africa, 522 (12.0%) were from Europe, 512 (11.8%) were from the Americas, and 17 (0.4%) were from Oceania. Of all patients, 533 (12.3%) came from low-income countries (LICs), 1940 (44.6%) from lower-middle, 1212 (27.9%) from upper-middle, and 666 (15.3%) from HICs.

Completeness of Data

For 4116 (94.6%) of the study patients, data were reported on each study parameter, except for age at first ocular symptom of retinoblastoma (2175 [50.0%]; not included in the analysis). Analysis by national income level showed that reporting was nearly complete (≥98.5%) for patients from high-income and upper-middle-income countries, and more than 94.1% and 89.1% for patients from lower-middle-income countries and LICs, respectively.

Symptoms Leading to Referral

The most common first symptom of disease was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]), with a further 162 (3.9%) patients having a combination of leukocoria and strabismus (eTable 3 in the Supplement). Proptosis was reported in 309 (7.4%) patients. At least 1 symptom of advanced disease (ie, proptosis, swollen eyelids, red eye) was reported in 487 (11.7%) patients. A higher income level was associated with a lower proportion of patients with symptoms of advanced disease (z score = 10.9, dim = 4; P < .001; additional analysis is provided in eTable 4 in the Supplement).

Symptoms at Time of Diagnosis at Retinoblastoma Centers

Of all patients, 2998 (70.4%) presented with either leukocoria, strabismus, or a combination of these symptoms (eTable 3 in the Supplement). In LICs, combinations of proptosis, red eye, orbital cellulitis, and extraocular retinoblastoma (ie, advanced disease) were present in 248 (46.7%) patients. Analysis of patients who had only leukocoria and/or strabismus (ie, early disease) as the symptoms noticed by the parents, but who presented to retinoblastoma treatment centers with symptoms of advanced disease, showed a significantly larger proportion coming from LICs (z score = 18.4, dim = 4; P < .001; additional analysis is provided in eTable 4 in the Supplement).

Age at Diagnosis

The overall median age at diagnosis was 23.5 months (interquartile range [IQR], 11.2-36.5 months; Table 1). The median age at diagnosis of patients from LICs was 30.5 months (IQR, 18.3-45.9 months) compared with 14.0 months (IQR, 6.2-26.6 months) for patients from HICs. There was a significant association between presentation age and national income level, with children in LMICs presenting at an older age (eTable 5 in the Supplement).

Tumor Staging

Globally, the most common cTNM stages were cT3 (n = 1933 [4.7%]), N0 (n = 3303 of 4281 [77.2%]), and Tumor Staging additional analysis is provided in Table 4 in the Supplement). In LICs, combinationsof proptosis, redeye, orbital cellulitis, and extraocular retinoblastoma (ie, advanced disease) were present in 248 (46.7%) patients. Analy-sis was reportedin309 (7.4%) patients. A higherincome level was associated with a lower proportion of patients with symptoms of advanced disease (z score = 10.9, dim = 4; P < .001; additional analysis is provided in eTable 4 in the Supplement).

Risk Factors for Advanced Disease at Time of Diagnosis

Sex (χ² = 1.016; P = .31), bilaterality (χ² = 0.830; P = .36) and familial history of retinoblastoma (χ² = 2.269; P = .13) were found to be nonsignificant factors for the prediction of cT4 category (extraocular retinoblastoma) and hence were removed from the model. On logistic regression, low-income level and older presentation age were found to be independent and significant predictive factors for advanced disease (Table 1).

Familial History and Bilateral Retinoblastoma

Familial history of retinoblastoma was reported in 199 of 4215 (4.7%) patients (15 [3.1%], 75 [4.0%], 54 [4.5%], and 55 [8.4%] patients from low, lower-middle, upper-middle, and high
Table 1. Clinical Characteristics at Presentation of 4351 New Patients With Retinoblastoma Diagnosed in 2017

<table>
<thead>
<tr>
<th>Parameter</th>
<th>National Income Level, No. (% within the national income level)</th>
<th>Significance</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low (18.3-45.9)</td>
<td>Lower-Middle (12.2-37.3)</td>
<td>Upper-Middle (12.9-37.6)</td>
</tr>
<tr>
<td>Age at diagnosis, median (IQR), mo</td>
<td>30.5 (22.2-48.0)</td>
<td>29.1 (18.1-42.9)</td>
<td>25.5 (12.9-37.6)</td>
</tr>
<tr>
<td></td>
<td>p < 0.001</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Laterality at diagnosisb</td>
<td>Unilateral (76.5%)</td>
<td>1325 (68.3%)</td>
<td>847 (69.9%)</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Familial history of retinoblastoma</td>
<td>No (96.9%)</td>
<td>1805 (96.0%)</td>
<td>556 (91.6%)</td>
</tr>
<tr>
<td></td>
<td>z score: 22.3, dim: 4</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Extraocular retinoblastoma</td>
<td>No (50.9%)</td>
<td>1393 (73.0%)</td>
<td>656 (98.5%)</td>
</tr>
<tr>
<td></td>
<td>z score: 21.8, dim: 4</td>
<td><.001</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; NA, not applicable.

a Spearman rank correlation.

b Inclusion criteria: 100% reporting.

c Fisher exact test for proportion of bilateral cases.

d Cochran-Armitage test for proportion of familial history of retinoblastoma.

Research Original Investigation
Global Retinoblastoma Presentation and Analysis by National Income Level

688 JAMA Oncology May 2020 Volume 6, Number 5
jamaoncology.com

Downloaded From: https://jamanetwork.com/ by a Non-Human Traffic (NHT) User on 09/26/2021
income-level countries, respectively). Bilateral disease at time of diagnosis was seen in 1341 of 4351 (30.8%) patients (125 [23.5%], 615 [31.7%], 365 [30.1%], and 236 [35.4%] patients from low, lower-middle, upper-middle, and high income-level countries, respectively) (Table 1). Significantly more familial (z score = −4.3, dim = 4; P < .001) and, independently, more bilateral cases were seen in HICs compared with LICs.

Diagnostic Facilities and Treatment Modalities
The available diagnostic and treatment modalities are shown in eTable 6 in the Supplement. The majority of patients (4201 [96.6%]) were diagnosed in a center that contained resources for computed tomography and/or magnetic resonance imaging. A histopathology service was available for 4236 (97.4%) participants, and intravenous chemotherapy for 4263 (98.0%).

Global Magnitude of Retinoblastoma and Representativeness of the Study
Given that the mean age at the time of diagnosis was approximately 2 years old, the 2015 birth rate data were used for calculation of the number of new retinoblastoma cases.16 According to these data, the predicted annual number of new retinoblastoma cases worldwide ranged from 7752 to 8914. Using an average incidence figure of 1 of 17 000 live births, capture rates were 88.2%, 56.5%, 48.7%, and 39.9% of expected cases from high, upper-middle, lower-middle, and low-income countries, respectively. No data were received from 65 countries and principalities, mainly with small populations; the estimated number of missing cases from these countries was 46.

Discussion
Findings of this study show a large disparity in the presentation patterns of retinoblastoma between HICs and LMICs. A total of 666 children were from HICs, 99% of whom had at the time of diagnosis a tumor confined to the eye and thus a favorable prognosis. In comparison, of the 3685 patients from LMICs, 25% were diagnosed with tumor spread beyond the globe, for which the prognosis is much worse.19,20 It is likely that the real gap in the pattern of retinoblastoma presentation is even wider owing to unreported patients in LICs who never arrived at a retinoblastoma treatment center and for whom death from metastatic disease is inevitable.

Late cancer diagnosis, also in the pediatric population, is a major issue in LMICs.21-25 This study confirms this finding for retinoblastoma, which, if detected early, can be cured. These findings are consistent with a recent study of global disease burden that found that cancer among 0- to 4-year-olds accounts for 37% of the global disease-adjusted life year; this proportional burden is greater in LMICs.26

The factors causing delay in retinoblastoma diagnosis and treatment in LMICs are beyond the scope of this study. However, the findings here suggest that late recognition of signs of retinoblastoma, as well as delay in reaching a dedicated retinoblastoma treatment center once ocular symptoms have been detected, likely play a role, and both factors are associated with national income level. These findings indicate clinically significant progression of signs between parental detection and presentation to a specialist center in LMICs. Earlier recognition of leukocoria or strabismus and urgent referral for diagnosis is very important if children are to receive treatment before extraocular spread occurs.

A familial history of retinoblastoma followed the same pattern, with relatively fewer cases in lower-income countries. A possible explanation could be underreporting or inadequate medical record keeping in resource-limited settings. However, a more plausible explanation would be that children with familial history of disease are diagnosed and treated early in HICs so that they survive to childbearing age, whereas this may not be the case in LMICs.

Nearly all essential diagnostic and therapeutic modalities were available in most participating treatment centers. Enucleation surgery, which was available in all treatment centers, can save lives, and intravenous chemotherapy, which was available for 98.0% of the patients in this study, can save lives and also result in globe salvage if patients are diagnosed and treated in time.27,28

The results of this study point to an urgent need to improve retinoblastoma detection and access to treatment in LMICs. Several initiatives are addressing this challenge by implementing twinning programs that link centers from higher-resource and lower-resource countries.12,29-32 However, there is a pressing need for coordinated action on a global level. In a rare yet curable cancer such as retinoblastoma, with approximately 8000 new patients annually worldwide, such an action is feasible to make retinoblastoma a zero-death cancer.23 The World Health Organization Global Initiative for Childhood Cancer aims to raise survival for key childhood cancers, including retinoblastoma, to 60% by the year 2030 by helping health systems in LMICs integrate childhood cancer into their national strategies and improve their capacity to diagnose and deliver curative treatment.24 In this context, accu-
rate retinoblastoma-specific data are essential. The results of this study serve as a report of the current retinoblastoma presentation, against which future interventions can be measured, and demonstrate the need for a strong global partnership to improve outcomes for patients with retinoblastoma everywhere.

Results of the present study showed that older age at presentation and, independently, national income level were associated with advanced disease, which suggests that other factors besides age may be important in disease progression. It has been suggested that infection by the human papillomavirus, which is more prevalent in LMICs, is associated with the development of nonhereditary retinoblastoma, and it is possible that this could be associated with more aggressive disease behavior. Another possible explanation relates to the genetic landscape of retinoblastoma and especially to cases with no \textit{RB1} mutation but a high level of amplification of the oncogene \textit{MYCN}. These cases are unilateral, develop at an early age, and show aggressive features. They were found only in 1.4% of unilateral retinoblastoma cases, all from cohorts in HICs, but have not been evaluated in patients from LICs.

Nevertheless, to our knowledge, it is the largest and most geographically comprehensive study in the field of retinoblastoma, and we believe its findings can be generalized. Second, data collection was mostly retrospective, with the exception of treatment centers that were recruited early in 2017. However, the simplicity of the study design and quality assurance process enabled the collection of almost complete data, also from LMICs. Third, the socioeconomic status of individual families was not included as a variable, and the national income level was used as a surrogate, an approach that assumes that all families from the same country are of the same socioeconomic level.

Conclusions

The findings of this cross-sectional global analysis of retinoblastoma at the time of diagnosis revealed important differences in presentation among patients from different countries, depending on their national income level. Patients with retinoblastoma from HICs present with early disease and are, therefore, likely to survive. In contrast, patients from lower-income settings present with late disease, many with extraocular extension and some already with metastasis, and their prognosis is poorer. A familial history of retinoblastoma is relatively uncommon in lower-income countries, likely owing to death related to late-disease presentation before childbearing years. A surprise finding of this study is that more advanced disease at presentation in lower-income countries is not entirely explained by older age. Further research is warranted to investigate what factors other than age play a role in disease progression in low-income settings. Prompt action at national and international levels is warranted to improve health education about retinoblastoma, as well as access to early diagnosis and treatment in retinoblastoma treatment centers in LMICs.

Published Online: February 27, 2020.

Correction: This article was corrected September 24, 2020, to fix an error in a coauthor’s name.

Al-Mafrachi, FBMS; Argentino A. Almeida, MD, Khalifa M. Alaswad, MD, Athar A. S. M. Al-Shaheen, MD, Entsiss H. Al Sharmary, MD, Pranavita D. Amiruddin, MD, Romano Zoncino, MD, Nicholas J. Astbury, FRCS, FRCOphth, Hatice T. Atalay, MD, La-ongkri Atchanaya, MD, Rose Atsiai, OCO, Taweevit Attasee, MD, Than H. Aung, MRCSEd, Silvia Ayala, Baglan Bayazkova, MD, Julia Balaguer, MD, PhD, Ruhengzal Babayeva, PhD, Walentyna Balwierz, MD, Honorio Barranco, MD, PhD, Covadonga Bascon, MD, MSc, Maja Beck Popovic, MD, Raquel Benavides, MD, Sarra Benmiloud, MD, Nissrine Bennani Guebessi, MD, PhD, Rokia C. Belle, MD, PhD, Phd, Jese L. Berry, MD, Anirban Bhaduri, MS, Sunil Bhat, MD, Shelley J. Biddulph, FCOPht, Eva M. Biwell, MD, Nadia Bobrova, MD, Marianna Boehner, H.C. Boldt, MD, Maria Teresa B. C. Bonanomi, MD, PhD, Norbert Bornfeld, MD, Gabrielle C. Bouda, MD, Hedi Bougila, MD, Phd, Amaria Boumedane, MD, Rachel C. Brennan, MD, Béginic'e G. Brichard, MD, Hedi Bougila, MD, Phd, Jasada Buuboonnam, MD, Patricia Calderon-Soto, MD, Doris A. Calee Jara, MD, Jayne E. Camuglia, FRANZCO, Miriam R. Cano, MD, MSc, Michael Capra, FRCP, Nathalie Cassoux, MD, PhD, Guimlerme Castela, MD, Luis Castillo, MD, Jaume Catala-Mora, MD, PhD, Guillermo L. Chantada, MD, PhD, Shabana Chauhtry, MD, Sonal S. Chauqule, MD, Argudt Chauhan, BA, Bhavna Chawla, MD, Violeta S. Chernodrinska, MD, PhD, Faraja S. Chwiga, MSc, Tsengelman Chulunbat, MD, PhD, Krzysztof Cieslik, MD, Ruellyn L. Cockcroft, MD, MB, MMEdPhd, Codruta Comsa, MD, Zella M. Correa, MD, PhD, Maria G. Correa Llano, MD, Timothy W. Conson, PhD, Kristin E. Cowan-Lyn, MBBS, Monika Collia, MD, PhD, Xuehao Cui, MS, Isac V. Da Gama, MD, Wantanne Dangboon, MD, Anirban Das, MD, Sima Das, MS, Jacquelyn M. Davanzo, BSN, BSPH, Alan Davidson, MBChB, MPhil, Patrick De Potter, MD, PhD, Karina Q. Delgado, MD, PhD, Hakan Demirci, MD, Laurence Desjardins, Rosal Y. Diaz Coronado, MD, Helen Dimaras, PhD, Andrew J. Djughshin, MPhil, Craig Donaldson, MD, FRANZCO, Carla R. Donato Macedo, MD, Monica D. Dragomir, MD, PhD, Yi Du, MD, Magithra D. Bruyn, MD, Kemala S. Edison, MD, I. Wayan Ela Suyawan, MD, Asmaa El Kettani, MD, Amal M. Elbahi, MD, James E. Elder, MBBS, Dina Elgalyal, BPh, Alaa M. Elhaddad, MD, PhD, Mohamaw M. Eliehassan, MD, Mahmoud M. Elzembery, MD, Vera A. Esumann, FWACS, Ted Grimbert A. Evina, MD, Zehra Faddo, MBBS, Adriana C. Fandillo, MD, Mohammad Farahounou, MD, Oluyenmi Fasina, FWACS, Delia D. P. G. Fernández, MSc, Ana Fernández-Tejero, MD, PhD, Allen Foster, FRCPht, Shahar Frenkel, MD, PhD, Ligia D. Fu, MD, Soad L. Fuentes-Alabi, MD, MPH, Brenda L. Galle, MD, Moira Gandiwa, MD, Juan L. Garcia, MD, MSc, David García Aldana, MD, Pascale Y. Gassant, MD, Jennifer A. Geel, MBChB, MMed, Fariba Ghassemi, MD, Ana V. Girón, MD, Zelamet Gisschew, MD, Marco A. Goens, MD, Aaron S. Gold, OD, Maya Goldberg-Lavid, MD, Glen A. Gole, MD, FRANZCO, Nir Gomel, MD, Efren Gonzalez, MD, Graciela Gonzalez Perez, MD, Liudmila Gonzalez-Rodriguez, MD.
Research Original Investigation

Global Retinoblastoma Presentation and Analysis by National Income Level

Hospital, Baghdad, Iraq (Al-Mafrachi); Beira Central Hospital, Beira, Mozambique (Amadeu); Tripoli Eye Hospital, University of Tripoli, Tripoli, Libya (Al-Awadi, El-Bahi); Oncology Unit, Child's Central Teaching Hospital, Baghdad, Iraq (Al-Shammary); National Eye Center, Cibando Eye Hospital, Bandung, Indonesia (Amiruddin, Kuntorni); Bambino Gesú IRCCS Children's Hospital, Rome, Italy (Antonino, Ida); Department of Ophthalmology, School of Medicine, Gazı University, Ankara, Turkey (Atalay, Hasarenesoglu); Siraj Hospital, Madinah University, Bangkok, Thailand (Athchaneeyasakul, Buaboonnam); Lighthouse For Christ Eye Centre, Mombasa, Kenya (Atsiaya, Matende); Department of Ophthalmology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Phra-Nakhon, Bangkok, Thailand (Attaouah, Baraporn), Yangon Eye Hospital, University of Medicine I, Yangon, Myanmar (Aung); Retina Consultants of Houston, Houston, Texas (Ayala, Schefler); Scientific Center of Pediatrics and Pediatric Surgery, Almaty, Kazakhstan (Baizakova); Pediatric Oncology Unit, Hospital, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee (Brennan); Division, Department of Oncology, St. Jude Children's Hospital, Paris, France (Cassoux); Centro Hospital Universitário de Coimbra, University of Coimbra, Coimbra, Portugal (Castela, Silva); Hospital Pereira Rossell, Montevideo, Uruguay (Castillo); Hospital Sant Joan de Déu, Barcelona, Spain (Catala-Mora, Chantada, Cindia Lano); Hospital Garrahan, Buenos Aires, Argentina (Chantada, Fandiño); National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina (Chantada); Paediatric Ophthalmology Department, Mayo Hospital and College of Allied Visual Sciences, King Edward Medical University, Lahore, Pakistan (Chaudhry); Department of Ophthalmic Plastic Surgery, Orbit and Ocular Oncology, PBMAS's H. V. Desai Eye Hospital, Pune, Maharashtra, India (Chaugule); University of Louisville, Louisville, Kentucky (Chauhan, Ramasubramanian); Ocular Oncology Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India (Chawla); Eye Clinic, Department of Ophthalmology, University Hospital Alexandrovskaya, Medical University, Sofia, Sofia, Bulgaria (Chernodrinska, Velekra-Stevceva); Muhimbili National Hospital, Dar es Salaam, Tanzania (Chiwanga, Nyka, S-cindii); National Center for Maternal and Children Health of Mongolia, Ulaanbaatar, Mongolia (Chuluunbat); Department of Ophthalmology, The Children's Memorial Health Institute, Warsaw, Poland (Cieslik, Olechowski); Stanislaw Children's Health, Auckland, New Zealand (Cockcroft); Department of Ophthalmology, University of Perugia, Perugia, Italy (Cocci); Trestoreansu, Bucharest, Romania (Comsa, Dragomir, Murgol); Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, and University of Cincinnati College of Medicine, Cincinnati, Ohio (Cornea); Indiana University Medical Center, Indianapolis (Corson, Plager); Bustamante Hospital for Children, Kingstown, Jamaica (Cowan-Lyn Vaughan); Semmelweis University, Budapest, Hungary (Csoka, Maka); Department of Ophthalmology, Xinhua Hospital, Shanghai, China (Cui, Q); Quemilane Central Hospital, Quemilane, Mozambique (Du Gama); Department of Ophthalmology, Songlnagarind Hospital, Prince of Songkla University, Songkla, Thailand (Dangboon, Singha); Department of Pediatric Hematology-Oncology, Tata Medical Center, Kolkata, India (A. Ds); Ocular Oncology Services, Dr. Shroff's Charity Eye Hospital, Ahmedabad, India (S. Ds); Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (Davanzo, A. D. Singh); Red Cross War Memorial Children's Hospital and the University of Cape Town, Cape Town, South Africa (Davison); National Children's Hospital, Panama City, Panama (Delgado, L., M. C. Hernandez); Department of Ophthalmology, Kellogg Eye Center, University of Michigan, Ann Arbor (Demirci); Institut Curie, Paris, France (Desjardins, Lumbroso); Instituto Nacional de Enfermedades Neoplasticas, Lima, Peru (Diaz Coronado, Wachtel, Zapata Lopez); The Hospital for Sick Children, Toronto, Ontario, Canada (Elder, Gal, Gallow); Department of Paediatrics, University of Otago, Christchurch, Children's Haematology and Oncology Center, Christchurch Hospital, Christchurch, New Zealand (Dodgshun); The Children's Hospital at Westmead, Sydney, New South Wales, Australia (Donaldson, Jones); Pediatric Oncology Institute, Federal University of São Paulo, São Paulo, Brazil (Donato Macedo, Teixeira); Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Du); University of KwaZulu-Natal, Durban, South Africa (Du Bruyn); Ophthalmology Department, Dr. M. Djam General Hospital, Faculty of Medicine, Andalus University, West Sumatra, Indonesia (Edison, A. Rahman); Department of Ophthalmology, Faculty of Medicine, Udayana University, Sanglah Eye Hospital, Bali, Indonesia (Esia Suryawan, Palawij); Department of Ophthalmology, Royal Children's Hospital, Parkville, Victoria, Australia (Elder, McKenzie, Staffen); Department of Paediatrics, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia (Elder); Children's Cancer Hospital Egypt 57357, Cairo, Egypt (Elgalaly); Department of Ophthalmology, Prof. Dr. Itay Beigelman Cancer Institute, University of Gezira, Wadi Madani, Sudan (Elhassan); Ophthalmology Unit, Department of Surgery, School of Medicine and Dentistry, University of Ghana, Accra, Ghana (Essuman); Magrabi ICO Cameroon Eye Institute, Yaounde, Cameroon (Evina, Nkumbre); Aga Khan University, Karachi, Pakistan (Fadoo, Jeeva); Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Rasool Akram Hospital, Tehran, Iran (Faraoun); Department of Ophthalmology, University College for Rare, Universes, Alh University, Nigeria (Fasina); Mi Clinic, Ciudad del Este, Paraguay (Fernandes); Hospital Universitario Virgen Macarena, Sevilla, Spain (Fernández-Tejeiro); Hadasah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel (Frenkel, Peler); Hospital Escuela, Tegucigalpa, Honduras (Fernandez); Pediatric Ophthalmology Unit, Department, Benjamim Bloom National Children's Hospital, San Salvador, El Salvador (Fuentes-Albi, Goen); Lions Sight First Eye Hospital, Queen Elizabeth Central Hospital, Blantyre, Malawi (Gandiva, Manda, Msulwa); Clinica Anglo American, Lima, Peru (Garcia); Servicio Andino de Salud, Chile, Spain (Garcia Aldana); Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa (Geel); Retina and Vitreous Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Ghasemi, Khodabandeh); Department of Ophthalmology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia (Gizachew, Sheriff); Murray Ocular Oncology and Retina, Miami, Florida (Gold, Murray); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Goldberg-Lavid, Keren-From); Department of Ophthalmology, Sourasky Medical Center Tel Aviv, School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Gomel); Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts (Gonzalez, Shalh); Hospital Civil de Guadalajara, Guadalajara, Mexico (Gonzalez Perez); Pediatric Oncology Unit, Instituto Regional de Enfermedades Neoplasicas del Sur, Arequipa, Peru (Garcia Pacheco); IAM NOOR Eye Care Programme, Afghanistan (Green, Majeed); Department of Clinical Genetics and Center for Rare, Universes, Alh University, Nigeria, Aarhus, Denmark (Gregersen); National Cancer Institute, Rio de Janeiro, Brazil (Grigorovski, Matsosinho); Département de Pédiatrie, CHU Sylvanus Olympio, Université de Lomé, Lomé, Togo (Guedonien); National Cancer Institute, Maharagama, Sri Lanka (Gunasekera); Department of Oncology, Ankara University School of Medicine, Ankara, Turkey (Gündüz), Bey Jerab Wadia Hospital for Children, Mumbai, India (H. Gupta, Mudalai); King George's Medical University, Lucknow, India (S. Gupta, Verma); Retinoblastoma Referral Center, University of Siena, Siena, Italy (Hadjidiastani); Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montréal,
Oncology, Islamia Ismaila Eye Institute and Hospital, Dhaka, Bangladesh (Rashid, Sultana); Department of Ophthalmology, Davidoff Center for Oncology, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Israel (Reich); School of Medicine and Dentistry, Kole-Bu Teaching Hospital, University of Ghana, Accra, Ghana (Renner); University of Pretoria, Pretoria, South Africa (Reynolds, Schoeman); Medical Federal Center, Yola, Nigeria (Ribadu); Nampula Central Hospital, Nampula, Mozambique (Ribane); Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (Ritter-Sovinz); Children’s Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon (Saad); National Biomedical Research Centre, Ophthalmology, Moorfields Eye Hospital, and UCL Institute of Ophthalmology and London Retinoblastoma Service, Royal London Hospital, London, United Kingdom (Sagoo); Department of Ophthalmology, Faculty of Medicine, Ain Shams University Cairo, Egypt (Said, Ziko); Hospital Dr Manuel Ascenso Villarroel, Cochabamba, Bolivia (Salas); Pediatric Hemato-Oncology, Hospital Universitario Infantil La Paz, Madrid, Spain (San Román Pacheco); Hospital Solca Quito, Quito, Ecuador (Sánchez); Mahatos Hospital, Vientiane, Laos; Department of Ophthalmology, Ruel Akram Hospital, Tehran, Iran (Sedaghat); Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India (Seth); National Institute of Ophthalmology, Dhaka, Bangladesh (Shakor); East Timor Eye Program, Dili, Timor-Leste (Sharma); Tata Memorial Hospital, Mumbai, India (Shetye, Vora); Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania (Shields); Ophthalmology Department, Noulachott Medical University, Noulachott, Mauritania (Sidi Cheikh); Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (U. Singh); Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, and Dr Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia (Sitorus, Victor); Casey Eye Institute, Oregon Health & Science University, Portland, Oregon (Street); Reem Journal University, Salesforce, Iraq (Sulaiman); Department of Ophthalmology, University of Washington, Seattle (Stacey, Weiss); Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia (Stafijfer); Children’s Mercy Hospital, Kansas City, Missouri (Stall); Department of Paediatrics and Child Health, University of the Free State, Bloemfontein, South Africa (Stones); BC Children’s Hospital, Vancouver, British Columbia, Canada (Strahle);Pediatra Hemato-Oncologia, Instituto Oncologico del Oriente Boliviano, Santa Cruz de la Sierra, Bolivia (Suarez); Hospital Clínico Universitario de Motilla, Segovia, Spain (Suleyman); Department of Ophthalmology, Royal Children’s Hospital, Melbourne, Australia (Sullivan); Department of Ophthalmology, National Cancer Center Hospital, Tokyo, Japan (Suzuki); Department of Pediatric Hematology and Oncology, Second Cancer Hospital of Medicine, Charles University, Prague, Czech Republic (Svobov); Africa Institute of Tropical Ophthalmology, Bamako, Mali (Sylla); Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru (Tarrillo Leiva, Vasquez); University Eye Clinic, Skiöje, Macedonia (Tateshi); National Cancer Center, Dharmas Cancer Hospital, Jakarta, Indonesia (Tehetrue); Ophthalmology Department, Federal University of São Paulo, São Paulo, Brazil (Teixeira); Kabgayi Eye Unit, Gitarama, Rwanda (Theophile); Department of Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (Toledano); Pediatric Oncology Service, Gabriel Toure Hospital, Bamako, Mali (Traoré); Department of Ophthalmology, Faculty of Medicine, Ocular Oncology Service, Istanbul University, Istanbul, Turkey (Turan); University Adam Barla, Abeche, Chad (Tyau-Tyau); Division of Pediatric Hematology-Oncology, Department of Pediatrics, Ankara University, Ankara, Turkey (Uenal); Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark (Urbak); National Cancer Center of Uzbekistan, Tashkent, Uzbekistan (Usmanov); Children’s Clinical University Hospital, Riga, Latvia (Valeina, Viksins); Department of Ophthalmology, Medical University of Graz, Graz, Austria (Wackernagel); Jos University Teaching Hospital, Jos, Nigeria (Wade); National Eye Center Kaduna, Kaduna, Nigeria (Walk); Department of Paediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China (Wang, Y. Zhang); Department of Surgery, St Jude Children’s Research Hospital, Memphis, Tennessee (Wilson); Department of Ophthalmology, Chiang Mai University, Chiang Mai, Thailand (Wong); Department of Ophthalmology, D. Wawtvongwana, and Ophthalmology Department, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand (Wongai); Department of Pediatric Ophthalmology, Guangzhou Children’s Hospital and Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China (Xiang); Kunning Children’s Hospital, Kunming, China (Xiao); State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China (Yang, Ye); Service d’Ophthalmologie, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of Congo (Yang); Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan (Yaqub); S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russia (Yaroyava, Yaroyov); Assistante Hospitalo Universitaire, Faculte de Medecine de Neouchatel Medecin Oncopatied, Center National de Neouchatel, Neuchacht, Mauritania (Zein); Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Beijing, China (C. Zhang, Zhao); Department of Ophthalmology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China (Zheng); Ophthalmology Department, Great Ormond Street Hospital, London, United Kingdom (Bowman).

Author Contributions: Dr Fabian had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors approved the final version for publication.

Study concept and design: Fabian, Foster, Bowman. Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Fabian, Bascaran, Chantada, Dimaras, Foster, Khetan, Kivela, Reddy, Sagoo, Stacey, Zondervan, Bowman. Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Stacey.

Conflict of Interest Disclosures: Dr Berry reports receiving grants from National Cancer Institute (KOBCCA232344), Wright Foundation, Knights Templar Eye Foundation, American Cancer Society, Hyundai Hope on Wheels, and Childhood Eye Cancer Trust, as well as nonfinancial support from Institute for Families, The Larry and Celia Moh Foundation, and Research to Prevent Blindness. Dr Correa reports receiving personal fees from Castle Biosciences and Immucore. Dr Diaz Coronado reports receiving support from Merck Sharp & Dohme. Dr Demirci reports receiving support from Castle Biosciences and Immucore. Dr Foster reports receiving grants from the Queen Elizabeth Diamond Jubilee Trust. Dr Gold reports receiving personal fees from Regeneron. Dr Harbour reports receiving royalties and other support from Castle Biosciences. Dr Hartnett reports receiving grants from the National Eye Institute; having a patent issued and a patent pending related to her work in retinoblastoma; receiving honoraria from Wolters Kluwer as editor chief of the textbook Pediatric Retino Dese, Second Edition; receiving honoraria for academic lectures at the University of Alabama at Birmingham, Michigan State University, University of Florida, University of Iowa, Ohio State University, Indiana University, Cole Eye Institute, Schei Eye Institute, Massachusetts Eye and Ear, University of Colorado, and receiving paid trips to consult for the National Eye Institute's National Advisory Eye Council and for grant review for the Knights Templar Eye Foundation. Dr Kivela reports receiving personal fees from Santen. Dr Materin reports receiving personal fees from IDEAYA Biosciences and Castle Biosciences. Dr Nair reports receiving personal fees from HelpMeSee and Carl Zeiss Meditec. Dr Oliver reports receiving grants from Roche. Dr Skaliet reports receiving support as a consultant from Castle Biosciences and Immucore. Dr Soebagio reports rights to 2 licensed patents. Dr Stahl reports receiving personal fees from Avedro and nonfinancial support from Syndexis.

Funding/Support: This work was supported by the Queen Elizabeth Diamond Jubilee Trust.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. The funder assisted in institutional review board application fees for selected retinoblastoma centers from low-income countries.

Additional Contributions: We thank the following contributors for assisting in the creation of the global network: Malakhoa Alina, Yuriy Serov, and Olga Yugay from N. N. Blokhin National Medical Research Center of Oncology in Moscow, Russia; Suzanya Tadevosyan from Helmholtz Moscow Research Institute of Eye Diseases in Moscow, Russia; George Ramappa from LV Prasad Eye Institute in Hyderabad, India; Ivan Manwadi from Cindero Eye Hospital in Bandung, Java Barat, Indonesia; Daniel Getaneh and Bethelhem Sileshi from Menelik II Hospital in Addis Ababa, Ethiopia; Mostafizur Rahman and Matura Khatun from Ishiphani Islamia Eye Institute and Hospital in Dhaka, Bangladesh; Alenka Lavric Groznik from University Hospital, Memoria Medical Center, Ljubljana in Ljubljana, Slovenia; Layal Bayram from Children’s Cancer Center of Lebanon in Beirut, Lebanon; Narjes Mehrvar from MAHAK Children Hospital in Tehran, Iran; Chinsisi Myirenda, Catherine Lunduka, and George Chaguluka from Lions Sight First Eye Hospital, Queen Elizabeth Central Hospital in Blantyre, Malawi; Suganwosari Ganesan and Pukhraj Rishi from Sankara Nethralaya.