Midlife Cardiorespiratory Fitness, Incident Cancer, and Survival After Cancer in Men: The Cooper Center Longitudinal Study | Cancer Screening, Prevention, Control | JAMA Oncology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Blair  SN, Wei  M, Lee  CD.  Cardiorespiratory fitness determined by exercise heart rate as a predictor of mortality in the Aerobics Center Longitudinal Study.  J Sports Sci. 1998;16(suppl):S47-S55.PubMedGoogle ScholarCrossref
Lee  CD, Blair  SN, Jackson  AS.  Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men.  Am J Clin Nutr. 1999;69(3):373-380.PubMedGoogle Scholar
Blair  SN, Kohl  HW  III, Paffenbarger  RS  Jr, Clark  DG, Cooper  KH, Gibbons  LW.  Physical fitness and all-cause mortality: a prospective study of healthy men and women.  JAMA. 1989;262(17):2395-2401.PubMedGoogle ScholarCrossref
Kodama  S, Saito  K, Tanaka  S,  et al.  Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis.  JAMA. 2009;301(19):2024-2035.PubMedGoogle ScholarCrossref
Kaminsky  LA, Arena  R, Beckie  TM,  et al; American Heart Association Advocacy Coordinating Committee, Council on Clinical Cardiology, and Council on Nutrition, Physical Activity and Metabolism.  The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association.  Circulation. 2013;127(5):652-662.PubMedGoogle ScholarCrossref
Byun  W, Sui  X, Hébert  JR,  et al.  Cardiorespiratory fitness and risk of prostate cancer: findings from the Aerobics Center Longitudinal Study.  Cancer Epidemiol. 2011;35(1):59-65.PubMedGoogle ScholarCrossref
Blair  SN, Kampert  JB, Kohl  HW  III,  et al.  Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women.  JAMA. 1996;276(3):205-210.PubMedGoogle ScholarCrossref
Murphy  SI, Xu  JQ, Kochanek  KD.  Death: Final Data for 2010. Hyattsville, MD: National Center for Health Statistics; 2013. National Vital Statistics Reports. Vol 61, No. 4.
Eyre  H, Kahn  R, Robertson  RM,  et al; American Cancer Society; American Diabetes Association; American Heart Association.  Preventing cancer, cardiovascular disease, and diabetes.  Circulation. 2004;109(25):3244-3255.PubMedGoogle ScholarCrossref
Gupta  S, Rohatgi  A, Ayers  CR,  et al.  Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality.  Circulation. 2011;123(13):1377-1383.PubMedGoogle ScholarCrossref
Barlow  CE, DeFina  LF, Radford  NB,  et al.  Cardiorespiratory fitness and long-term survival in “low-risk” adults.  J Am Heart Assoc. 2012;1(4):e001354.PubMedGoogle ScholarCrossref
Smith  BD, Smith  GL, Hurria  A, Hortobagyi  GN, Buchholz  TA.  Future of cancer incidence in the United States: burdens upon an aging, changing nation.  J Clin Oncol. 2009;27(17):2758-2765.PubMedGoogle ScholarCrossref
Pal  SK, Katheria  V, Hurria  A.  Evaluating the older patient with cancer.  CA Cancer J Clin. 2010;60(2):120-132.PubMedGoogle ScholarCrossref
Archer  E, Blair  SN.  Physical activity and the prevention of cardiovascular disease: from evolution to epidemiology.  Prog Cardiovasc Dis. 2011;53:387-396.Google ScholarCrossref
Zhou  Y, Chlebowski  R, LaMonte  MJ,  et al.  Body mass index, physical activity, and mortality in women diagnosed with ovarian cancer: results from the Women’s Health Initiative.  Gynecol Oncol. 2014;133(1):4-10.PubMedGoogle ScholarCrossref
Keegan  TH, Milne  RL, Andrulis  IL,  et al.  Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis.  Breast Cancer Res Treat. 2010;123(2):531-542.PubMedGoogle ScholarCrossref
Pettersson  A, Lis  RT, Meisner  A,  et al.  Modification of the association between obesity and lethal prostate cancer by TMPRSS2:ERG.  J Natl Cancer Inst. 2013;105(24):1881-1890.PubMedGoogle ScholarCrossref
Murphy  TK, Calle  EE, Rodriguez  C, Kahn  HS, Thun  MJ.  Body mass index and colon cancer mortality in a large prospective study.  Am J Epidemiol. 2000;152(9):847-854.PubMedGoogle ScholarCrossref
Rodriguez  C, Patel  AV, Calle  EE, Jacobs  EJ, Chao  A, Thun  MJ.  Body mass index, height, and prostate cancer mortality in two large cohorts of adult men in the United States.  Cancer Epidemiol Biomarkers Prev. 2001;10(4):345-353.PubMedGoogle Scholar
Kampert  JB, Blair  SN, Barlow  CE, Kohl  HW  III.  Physical activity, physical fitness, and all-cause and cancer mortality: a prospective study of men and women.  Ann Epidemiol. 1996;6(5):452-457.PubMedGoogle ScholarCrossref
Hu  G, Tuomilehto  J, Silventoinen  K, Barengo  NC, Peltonen  M, Jousilahti  P.  The effects of physical activity and body mass index on cardiovascular, cancer and all-cause mortality among 47 212 middle-aged Finnish men and women.  Int J Obes (Lond). 2005;29(8):894-902.PubMedGoogle ScholarCrossref
Jones  LW, Haykowsky  MJ, Swartz  JJ, Douglas  PS, Mackey  JR.  Early breast cancer therapy and cardiovascular injury.  J Am Coll Cardiol. 2007;50(15):1435-1441.PubMedGoogle ScholarCrossref
Blair  SN, Kohl  HW  III, Barlow  CE, Paffenbarger  RS  Jr, Gibbons  LW, Macera  CA.  Changes in physical fitness and all-cause mortality.  JAMA. 1995;273(14):1093-1098.PubMedGoogle ScholarCrossref
Lakoski  SG, Barlow  CE, Farrell  SW, Berry  JD, Morrow  JR  Jr, Haskell  WL.  Impact of body mass index, physical activity, and other clinical factors on cardiorespiratory fitness (from the Cooper Center longitudinal study).  Am J Cardiol. 2011;108(1):34-39.PubMedGoogle ScholarCrossref
Pollock  ML, Bohannon  RL, Cooper  KH,  et al.  A comparative analysis of four protocols for maximal treadmill stress testing.  Am Heart J. 1976;92(1):39-46.PubMedGoogle ScholarCrossref
Pollock  ML, Foster  C, Schmidt  D, Hellman  C, Linnerud  AC, Ward  A.  Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women.  Am Heart J. 1982;103(3):363-373.PubMedGoogle ScholarCrossref
Willis  BL, Morrow  JR  Jr, Jackson  AW, DeFina  LF, Cooper  KH.  Secular change in cardiorespiratory fitness of men: Cooper Center Longitudinal Study.  Med Sci Sports Exerc. 2011;43(11):2134-2139.PubMedGoogle ScholarCrossref
Daviglus  ML, Liu  K, Pirzada  A,  et al.  Cardiovascular risk profile earlier in life and Medicare costs in the last year of life.  Arch Intern Med. 2005;165(9):1028-1034.PubMedGoogle ScholarCrossref
Virnig  BA, McBean  M.  Administrative data for public health surveillance and planning.  Annu Rev Public Health. 2001;22:213-230.PubMedGoogle ScholarCrossref
Gorina  Y, Kramarow  EA.  Identifying chronic conditions in Medicare claims data: evaluating the Chronic Condition Data Warehouse algorithm.  Health Serv Res. 2011;46(5):1610-1627.PubMedGoogle ScholarCrossref
Wolff  JL, Starfield  B, Anderson  G.  Prevalence, expenditures, and complications of multiple chronic conditions in the elderly.  Arch Intern Med. 2002;162(20):2269-2276.PubMedGoogle ScholarCrossref
Wei  L, Lin  DY, Weissfield  L.  Regression analysis of multivariate incomplete failure time data by modeling marginal distributions.  J Am Stat Assoc. 1989;84(408):1065-1073.Google ScholarCrossref
Lin  DW.  The robust inference for the Cox proportional hazards model.  J Am Stat Assoc. 1989;84:1074-1078.Google ScholarCrossref
Laukkanen  JA, Pukkala  E, Rauramaa  R, Mäkikallio  TH, Toriola  AT, Kurl  S.  Cardiorespiratory fitness, lifestyle factors and cancer risk and mortality in Finnish men.  Eur J Cancer. 2010;46(2):355-363.PubMedGoogle ScholarCrossref
Oliveria  SA, Kohl  HW  III, Trichopoulos  D, Blair  SN.  The association between cardiorespiratory fitness and prostate cancer.  Med Sci Sports Exerc. 1996;28(1):97-104.PubMedGoogle ScholarCrossref
Kohl  HW, Blair  SN, Paffenbarger  RS  Jr, Macera  CA, Kronenfeld  JJ.  A mail survey of physical activity habits as related to measured physical fitness.  Am J Epidemiol. 1988;127(6):1228-1239.PubMedGoogle Scholar
Siegel  R, DeSantis  C, Virgo  K,  et al.  Cancer treatment and survivorship statistics, 2012.  CA Cancer J Clin. 2012;62(4):220-241.PubMedGoogle ScholarCrossref
Siegel  R, Naishadham  D, Jemal  A.  Cancer statistics, 2012.  CA Cancer J Clin. 2012;62(1):10-29.PubMedGoogle ScholarCrossref
Warburton  DE, Nicol  CW, Bredin  SS.  Prescribing exercise as preventive therapy.  CMAJ. 2006;174(7):961-974.PubMedGoogle ScholarCrossref
Friedenreich  CM.  Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms.  Recent Results Cancer Res. 2011;188:125-139.PubMedGoogle Scholar
Friedenreich  CM, Orenstein  MR.  Physical activity and cancer prevention.  J Nutr. 2002;132(11)(suppl):3456S-3464S.PubMedGoogle Scholar
Betof  AS, Dewhirst  MW, Jones  LW.  Effects and potential mechanisms of exercise training on cancer progression: a translational perspective.  Brain Behav Immun. 2013;30(suppl):S75-S87.PubMedGoogle ScholarCrossref
Ballard-Barbash  R, Friedenreich  CM, Courneya  KS, Siddiqi  SM, McTiernan  A, Alfano  CM.  Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review.  J Natl Cancer Inst. 2012;104(11):815-840.PubMedGoogle ScholarCrossref
Archer  E, Blair  SN.  Physical activity and the prevention of cardiovascular disease.  Prog Cardiovasc Dis. 2011;53(6):387-396.PubMedGoogle ScholarCrossref
Lee  DC, Sui  X, Ortega  FB,  et al.  Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women.  Br J Sports Med. 2011;45(6):504-510.PubMedGoogle ScholarCrossref
Sandercock  G, Hurtado  V, Cardoso  F.  Changes in cardiorespiratory fitness in cardiac rehabilitation patients: a meta-analysis.  Int J Cardiol. 2013;167(3):894-902.PubMedGoogle ScholarCrossref
Boulé  NG, Kenny  GP, Haddad  E, Wells  GA, Sigal  RJ.  Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus.  Diabetologia. 2003;46(8):1071-1081.PubMedGoogle ScholarCrossref
Speck  RM, Courneya  KS, Mâsse  LC, Duval  S, Schmitz  KH.  An update of controlled physical activity trials in cancer survivors.  J Cancer Surviv. 2010;4(2):87-100.PubMedGoogle ScholarCrossref
Lauer  MS.  How will exercise capacity gain enough respect?  Circulation. 2011;123(13):1364-1366.PubMedGoogle ScholarCrossref
Welch  HG, Sharp  SM, Gottlieb  DJ, Skinner  JS, Wennberg  JE.  Geographic variation in diagnosis frequency and risk of death among Medicare beneficiaries.  JAMA. 2011;305(11):1113-1118.PubMedGoogle ScholarCrossref
Willis  BL, Gao  A, Leonard  D, Defina  LF, Berry  JD.  Midlife fitness and the development of chronic conditions in later life.  Arch Intern Med. 2012;172(17):1333-1340.PubMedGoogle ScholarCrossref
Original Investigation
May 2015

Midlife Cardiorespiratory Fitness, Incident Cancer, and Survival After Cancer in Men: The Cooper Center Longitudinal Study

Author Affiliations
  • 1Vermont Cancer Center, Division of Hematology/Oncology, University of Vermont, Burlington
  • 2The Cooper Institute, Dallas, Texas
  • 3Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
  • 4Duke University Medical Center, Durham, North Carolina
  • 5Memorial Sloan Kettering Cancer Center, New York, New York
JAMA Oncol. 2015;1(2):231-237. doi:10.1001/jamaoncol.2015.0226

Importance  Cardiorespiratory fitness (CRF) as assessed by formalized incremental exercise testing is an independent predictor of numerous chronic diseases, but its association with incident cancer or survival following a diagnosis of cancer has received little attention.

Objective  To assess the association between midlife CRF and incident cancer and survival following a cancer diagnosis.

Design, Setting, and Participants  This was a prospective, observational cohort study conducted at a preventive medicine clinic. The study included 13 949 community-dwelling men who had a baseline fitness examination. All men completed a comprehensive medical examination, a cardiovascular risk factor assessment, and incremental treadmill exercise test to evaluate CRF. We used age- and sex-specific distribution of treadmill duration from the overall Cooper Center Longitudinal Study population to define fitness groups as those with low (lowest 20%), moderate (middle 40%), and high (upper 40%) CRF groups. The adjusted multivariable model included age, examination year, body mass index, smoking, total cholesterol level, systolic blood pressure, diabetes mellitus, and fasting glucose level. Cardiorespiratory fitness levels were assessed between 1971 and 2009, and incident lung, prostate, and colorectal cancer using Medicare Parts A and B claims data from 1999 to 2009; the analysis was conducted in 2014.

Main Outcomes and Measures  The main outcomes were (1) incident prostate, lung, and colorectal cancer and (2) all-cause mortality and cause-specific mortality among men who developed cancer at Medicare age (≥65 years).

Results  Compared with men with low CRF, the adjusted hazard ratios (HRs) for incident lung, colorectal, and prostate cancers among men with high CRF were 0.45 (95% CI, 0.29-0.68), 0.56 (95% CI, 0.36-0.87), and 1.22 (95% CI, 1.02-1.46), respectively. Among those diagnosed as having cancer at Medicare age, high CRF in midlife was associated with an adjusted 32% (HR, 0.68; 95% CI, 0.47-0.98) risk reduction in all cancer-related deaths and a 68% reduction in cardiovascular disease mortality following a cancer diagnosis (HR, 0.32; 95% CI, 0.16-0.64) compared with men with low CRF in midlife.

Conclusions and Relevance  There is an inverse association between midlife CRF and incident lung and colorectal cancer but not prostate cancer. High midlife CRF is associated with lower risk of cause-specific mortality in those diagnosed as having cancer at Medicare age.