The Global Burden of Cancer 2013 | Breast Cancer | JAMA Oncology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
Audio Author Interview (6:20)
1x
0:00 / 0:00
Video Summary of the Global Burden of Cancer 2013
1.
GBD 2013 Mortality and Causes of Death Collaborators.  Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.  Lancet. 2015;385(9963):117-171.PubMedGoogle ScholarCrossref
2.
Lozano  R, Naghavi  M, Foreman  K,  et al.  Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 [published correction appears in Lancet. 2013;381(9867):628].  Lancet. 2012;380(9859):2095-2128.PubMedGoogle ScholarCrossref
3.
Murray  CJ, Lopez  AD.  Mortality by cause for eight regions of the world: Global Burden of Disease Study.  Lancet. 1997;349(9061):1269-1276.PubMedGoogle ScholarCrossref
4.
Allemani  C, Weir  HK, Carreira  H,  et al; CONCORD Working Group.  Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2).  Lancet. 2015;385(9972):977-1010.PubMedGoogle ScholarCrossref
5.
Edwards  BK, Noone  AM, Mariotto  AB,  et al.  Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer.  Cancer. 2014;120(9):1290-1314.PubMedGoogle ScholarCrossref
6.
Coleman  MP, Gatta  G, Verdecchia  A,  et al; EUROCARE Working Group.  EUROCARE-3 summary: cancer survival in Europe at the end of the 20th century.  Ann Oncol. 2003;14(suppl 5):v128-v149.PubMedGoogle ScholarCrossref
7.
Murray  CJL, Ezzati  M, Flaxman  AD,  et al.  GBD 2010: design, definitions, and metrics.  Lancet. 2012;380(9859):2063-2066.PubMedGoogle ScholarCrossref
8.
Lim  SS, Vos  T, Flaxman  AD,  et al.  A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010.  Lancet. 2012;380(9859):2224-2260.PubMedGoogle ScholarCrossref
9.
Murray  CJL, Vos  T, Lozano  R,  et al.  Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 [published correction appears in Lancet. 2013;381(9867):628].  Lancet. 2012;380(9859):2197-2223.PubMedGoogle ScholarCrossref
10.
Salomon  JA, Wang  H, Freeman  MK,  et al.  Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010.  Lancet. 2012;380(9859):2144-2162.PubMedGoogle ScholarCrossref
11.
Salomon  JA, Vos  T, Hogan  DR,  et al.  Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010.  Lancet. 2012;380(9859):2129-2143.PubMedGoogle ScholarCrossref
12.
Vos  T, Flaxman  AD, Naghavi  M,  et al.  Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 [published correction appears in Lancet. 2013;381(9867):628].  Lancet. 2012;380(9859):2163-2196.PubMedGoogle ScholarCrossref
13.
Wang  H, Dwyer-Lindgren  L, Lofgren  KT,  et al.  Age-specific and sex-specific mortality in 187 countries, 1970-2010: a systematic analysis for the Global Burden of Disease Study 2010.  Lancet. 2012;380(9859):2071-2094.PubMedGoogle ScholarCrossref
14.
Wang  H, Liddell  CA, Coates  MM,  et al.  Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.  Lancet. 2014;384(9947):957-979. doi:10.1016/S0140-6736(14)60497-9.PubMedGoogle ScholarCrossref
15.
Doll  R, Payne  P, Waterhouse  J, eds.  Cancer Incidence in Five Continents.Vol I. Geneva, Switzerland: Union Internationale Contre le Cancer; 1966.
16.
Doll  R, Muir  C, Waterhouse  J, eds.  Cancer Incidence in Five Continents.Vol II. Geneva, Switzerland: Union Internationale Contre le Cancer; 1970.
17.
Waterhouse  J, Muir  C, Correa  P, Powell  J, eds.  Cancer Incidence in Five Continents.Vol III. Lyon, France: IARC; 1976.
18.
Waterhouse  J, Muir  C, Shanmugaratnam  K, Powell  J, eds.  Cancer Incidence in Five Continents.Vol IV. Lyon, France: IARC; 1982.
19.
Muir  C, Mack  T, Powell  J, Whelan  S, eds.  Cancer Incidence in Five Continents.Vol V. Lyon, France: IARC; 1987.
20.
Parkin  D, Raymond  L, Young  J,  et al, eds.  Cancer Incidence in Five Continents.Vol VI. Lyon, France: IARC; 1992.
21.
Parkin  D, Whelan  S, Ferlay  J, Raymond  L, Young  J, eds.  Cancer Incidence in Five Continents.Vol VII. Lyon, France: IARC; 1997.
22.
Parkin  D, Whelan  S, Ferlay  J, Teppo  L, Thomas  D, eds.  Cancer Incidence in Five Continents.Vol VIII. Lyon, France: IARC; 2002.
23.
Curado  MP, Edwards  B, Shin  HR,  et al, eds.  Cancer Incidence in Five Continents.Vol IX. Lyon, France: IARC; 2007.
24.
Forman  D, Bray  F, Brewster  DH,  et al, eds.  Cancer Incidence in Five Continents.Vol X. Lyon, France: IARC; 2013.
25.
Foreman  KJ, Lozano  R, Lopez  AD, Murray  CJ.  Modeling causes of death: an integrated approach using CODEm.  Popul Health Metr. 2012;10:1.PubMedGoogle ScholarCrossref
26.
GBD 2013 Disease and Injury Incidence and Prevalence Collaborators.  Global, regional, and national incidence, prevalence, and YLDs for 301 acute and chronic diseases and injuries for 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.  Lancet. In press.Google Scholar
27.
Cho  E, Curhan  G, Hankinson  SE,  et al.  Prospective evaluation of analgesic use and risk of renal cell cancer.  Arch Intern Med. 2011;171(16):1487-1493.PubMedGoogle ScholarCrossref
28.
Chow  WH, Gridley  G, Fraumeni  JF  Jr, Järvholm  B.  Obesity, hypertension, and the risk of kidney cancer in men.  N Engl J Med. 2000;343(18):1305-1311.PubMedGoogle ScholarCrossref
29.
Hunt  JD, van der Hel  OL, McMillan  GP, Boffetta  P, Brennan  P.  Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies.  Int J Cancer. 2005;114(1):101-108.PubMedGoogle ScholarCrossref
30.
Mandel  JS, McLaughlin  JK, Schlehofer  B,  et al.  International renal-cell cancer study, IV: occupation.  Int J Cancer. 1995;61(5):601-605.PubMedGoogle ScholarCrossref
31.
Ahn  HS, Kim  HJ, Welch  HG.  Korea’s thyroid-cancer “epidemic”—screening and overdiagnosis.  N Engl J Med. 2014;371(19):1765-1767.PubMedGoogle ScholarCrossref
32.
Ho  AS, Davies  L, Nixon  IJ,  et al.  Increasing diagnosis of subclinical thyroid cancers leads to spurious improvements in survival rates.  Cancer. 2015. doi:10.1002/cncr.29289.PubMedGoogle Scholar
33.
Pandeya  N, McLeod  DS, Balasubramaniam  K,  et al.  Increasing thyroid cancer incidence in Queensland, Australia 1982-2008: true increase or overdiagnosis?  Clin Endocrinol (Oxf). 2015. doi:10.1111/cen.12724.PubMedGoogle Scholar
34.
United Nations.  United Nations Millennium Development Goals.http://www.un.org/millenniumgoals/. Accessed February 2, 2015.
35.
Ezzati  M, Lopez  AD, Rodgers  A, Vander Hoorn  S, Murray  CJL; Comparative Risk Assessment Collaborating Group.  Selected major risk factors and global and regional burden of disease.  Lancet. 2002;360(9343):1347-1360.PubMedGoogle ScholarCrossref
36.
Ng  M, Fleming  T, Robinson  M,  et al.  Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013.  Lancet. 2014;384(9945):766-781. doi:10.1016/S0140-6736(14)60460-8.PubMedGoogle ScholarCrossref
37.
Di Cesare  M, Khang  YH, Asaria  P,  et al; Lancet NCD Action Group.  Inequalities in non-communicable diseases and effective responses.  Lancet. 2013;381(9866):585-597.PubMedGoogle ScholarCrossref
38.
Ng  M, Freeman  MK, Fleming  TD,  et al.  Smoking prevalence and cigarette consumption in 187 countries, 1980-2012.  JAMA. 2014;311(2):183-192.PubMedGoogle ScholarCrossref
39.
Pampel  F.  Tobacco use in sub-Saharan Africa: estimates from the demographic health surveys.  Soc Sci Med. 2008;66(8):1772-1783.PubMedGoogle ScholarCrossref
40.
Seow  A, Poh  WT, Teh  M,  et al.  Fumes from meat cooking and lung cancer risk in Chinese women.  Cancer Epidemiol Biomarkers Prev. 2000;9(11):1215-1221.PubMedGoogle Scholar
41.
Subbaraman  N.  Public health: a burning issue.  Nature. 2014;513(7517):S16-S17.PubMedGoogle ScholarCrossref
42.
Wang  X-R, Chiu  Y-L, Qiu  H, Au  JSK, Yu  IT-S.  The roles of smoking and cooking emissions in lung cancer risk among Chinese women in Hong Kong.  Ann Oncol. 2009;20(4):746-751.PubMedGoogle ScholarCrossref
43.
Yin  Z, Cui  Z, Ren  Y,  et al.  Genetic polymorphisms of TERT and CLPTM1L, cooking oil fume exposure, and risk of lung cancer: a case-control study in a Chinese non-smoking female population.  Med Oncol. 2014;31(8):114.PubMedGoogle ScholarCrossref
44.
Yu  ITS, Chiu  Y-L, Au  JSK, Wong  T-W, Tang  J-L.  Dose-response relationship between cooking fumes exposures and lung cancer among Chinese nonsmoking women.  Cancer Res. 2006;66(9):4961-4967.PubMedGoogle ScholarCrossref
45.
Campos  NG, Kim  JJ, Castle  PE,  et al.  Health and economic impact of HPV 16/18 vaccination and cervical cancer screening in Eastern Africa.  Int J Cancer. 2012;130(11):2672-2684.PubMedGoogle ScholarCrossref
46.
Sankaranarayanan  R, Anorlu  R, Sangwa-Lugoma  G, Denny  LA.  Infrastructure requirements for human papillomavirus vaccination and cervical cancer screening in sub-Saharan Africa.  Vaccine. 2013;31(suppl 5):F47-F52.PubMedGoogle ScholarCrossref
47.
Sankaranarayanan  R, Nene  BM, Dinshaw  KA,  et al; Osmanabad District Cervical Screening Study Group.  A cluster randomized controlled trial of visual, cytology and human papillomavirus screening for cancer of the cervix in rural India.  Int J Cancer. 2005;116(4):617-623.PubMedGoogle ScholarCrossref
48.
Sankaranarayanan  R, Rajkumar  R, Theresa  R,  et al.  Initial results from a randomized trial of cervical visual screening in rural south India.  Int J Cancer. 2004;109(3):461-467.PubMedGoogle ScholarCrossref
49.
Sauvaget  C, Fayette  J-M, Muwonge  R, Wesley  R, Sankaranarayanan  R.  Accuracy of visual inspection with acetic acid for cervical cancer screening.  Int J Gynaecol Obstet. 2011;113(1):14-24.PubMedGoogle ScholarCrossref
50.
World Health Organization.  Comprehensive Cervical Cancer Control: A Guide to Essential Practice. Geneva, Switzerland: World Health Organization; 2014.
51.
Chen  CJ, Liang  KY, Chang  AS,  et al.  Effects of hepatitis B virus, alcohol drinking, cigarette smoking and familial tendency on hepatocellular carcinoma.  Hepatology. 1991;13(3):398-406.PubMedGoogle ScholarCrossref
52.
Davila  JA, Morgan  RO, Shaib  Y, McGlynn  KA, El-Serag  HB.  Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study.  Gastroenterology. 2004;127(5):1372-1380.PubMedGoogle ScholarCrossref
53.
Beasley  RP, Hwang  LY, Lin  CC, Chien  CS.  Hepatocellular carcinoma and hepatitis B virus: a prospective study of 22,707 men in Taiwan.  Lancet. 1981;2(8256):1129-1133.PubMedGoogle ScholarCrossref
54.
Yuen  M-F, Tanaka  Y, Fong  DY,  et al.  Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B.  J Hepatol. 2009;50(1):80-88.PubMedGoogle ScholarCrossref
55.
Tsukuma  H, Hiyama  T, Tanaka  S,  et al.  Risk factors for hepatocellular carcinoma among patients with chronic liver disease.  N Engl J Med. 1993;328(25):1797-1801.PubMedGoogle ScholarCrossref
56.
Perz  JF, Armstrong  GL, Farrington  LA, Hutin  YJF, Bell  BP.  The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide.  J Hepatol. 2006;45(4):529-538.PubMedGoogle ScholarCrossref
57.
Griffiths  UK, Hutton  G, Das Dores Pascoal  E.  The cost-effectiveness of introducing hepatitis B vaccine into infant immunization services in Mozambique.  Health Policy Plan. 2005;20(1):50-59.PubMedGoogle ScholarCrossref
58.
Tu  H-AT, Woerdenbag  HJ, Kane  S, Riewpaiboon  A, van Hulst  M, Postma  MJ.  Economic evaluations of hepatitis B vaccination for developing countries.  Expert Rev Vaccines. 2009;8(7):907-920.PubMedGoogle ScholarCrossref
59.
Lambe  M, Eloranta  S, Wigertz  A, Blomqvist  P.  Pancreatic cancer: reporting and long-term survival in Sweden.  Acta Oncol. 2011;50(8):1220-1227.PubMedGoogle ScholarCrossref
60.
Kilander  C, Mattsson  F, Ljung  R, Lagergren  J, Sadr-Azodi  O.  Systematic underreporting of the population-based incidence of pancreatic and biliary tract cancers.  Acta Oncol. 2014;53(6):822-829.PubMedGoogle ScholarCrossref
61.
Khanna  A, Mansuri  S, Mortimore  S, De  M, Elliott  R, Sharp  J.  Underreporting of mortality from head and neck carcinoma: our experience at a tertiary head and neck cancer unit.  Clin Otolaryngol. 2013;38(1):103-104.PubMedGoogle ScholarCrossref
62.
Craig  BM, Rollison  DE, List  AF, Cogle  CR.  Underreporting of myeloid malignancies by United States cancer registries.  Cancer Epidemiol Biomarkers Prev. 2012;21(3):474-481.PubMedGoogle ScholarCrossref
63.
International Agency for Research on Cancer.  Global Initiative for Cancer Registry Development (GICR).http://gicr.iarc.fr/. Accessed April 18, 2015.
64.
Suwanrungruang  K, Sriplung  H, Temiyasathit  S,  et al.  Appropriateness of the standard mortality/incidence ratio in evaluation of completeness of population-based cancer registry data.  Asian Pac J Cancer Prev. 2011;12(12):3283-3288.PubMedGoogle Scholar
65.
Parkin  DM, Bray  F.  Evaluation of data quality in the cancer registry: principles and methods, II: completeness.  Eur J Cancer. 2009;45(5):756-764.PubMedGoogle ScholarCrossref
66.
Ellis  L, Woods  LM, Estève  J, Eloranta  S, Coleman  MP, Rachet  B.  Cancer incidence, survival and mortality: explaining the concepts.  Int J Cancer. 2014;135(8):1774-1782.PubMedGoogle ScholarCrossref
67.
NCD.  NCD Global Monitoring Framework. http://www.who.int/nmh/global_monitoring_framework/en/. Accessed February 4, 2015.
Special Communication
July 2015

The Global Burden of Cancer 2013

Global Burden of Disease Cancer Collaboration
JAMA Oncol. 2015;1(4):505-527. doi:10.1001/jamaoncol.2015.0735
Abstract

Importance  Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies.

Objective  To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013.

Evidence Review  The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs.

Findings  In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries.

Conclusions and Relevance  Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation.

×