Association Between Parkinson Disease and Risk of Cancer in Taiwan | Cancer Screening, Prevention, Control | JAMA Oncology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Samii  A, Nutt  JG, Ransom  BR.  Parkinson’s disease.  Lancet. 2004;363(9423):1783-1793.PubMedGoogle ScholarCrossref
2.
Thomas  B, Beal  MF.  Parkinson’s disease.  Hum Mol Genet. 2007;16 Spec No. 2(Spec No 2):R183-R194.PubMedGoogle ScholarCrossref
3.
Klein  C, Westenberger  A.  Genetics of Parkinson’s disease.  Cold Spring Harb Perspect Med. 2012;2(1):a008888.PubMedGoogle ScholarCrossref
4.
Pan  T, Zhu  J, Hwu  WJ, Jankovic  J.  The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.  PLoS One. 2012;7(9):e45183.PubMedGoogle ScholarCrossref
5.
Bethge  N, Lothe  RA, Honne  H,  et al.  Colorectal cancer DNA methylation marker panel validated with high performance in non-Hodgkin lymphoma.  Epigenetics. 2014;9(3):428-436.PubMedGoogle ScholarCrossref
6.
Veeriah  S, Taylor  BS, Meng  S,  et al.  Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies.  Nat Genet. 2010;42(1):77-82.PubMedGoogle ScholarCrossref
7.
Fujiwara  M, Marusawa  H, Wang  HQ,  et al.  Parkin as a tumor suppressor gene for hepatocellular carcinoma.  Oncogene. 2008;27(46):6002-6011.PubMedGoogle ScholarCrossref
8.
Gong  Y, Zack  TI, Morris  LG,  et al.  Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins.  Nat Genet. 2014;46(6):588-594.PubMedGoogle ScholarCrossref
9.
Xiong  D, Wang  Y, Kupert  E,  et al.  A recurrent mutation in PARK2 is associated with familial lung cancer.  Am J Hum Genet. 2015;96(2):301-308.PubMedGoogle ScholarCrossref
10.
Martin  SA, Hewish  M, Sims  D, Lord  CJ, Ashworth  A.  Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers.  Cancer Res. 2011;71(5):1836-1848.PubMedGoogle ScholarCrossref
11.
O’Flanagan  CH, Morais  VA, Wurst  W, De Strooper  B, O’Neill  C.  The Parkinson’s gene PINK1 regulates cell cycle progression and promotes cancer-associated phenotypes.  Oncogene. 2015;34(11):1363-1374.PubMedGoogle ScholarCrossref
12.
Tsuchiya  B, Iwaya  K, Kohno  N,  et al.  Clinical significance of DJ-1 as a secretory molecule: retrospective study of DJ-1 expression at mRNA and protein levels in ductal carcinoma of the breast.  Histopathology. 2012;61(1):69-77.PubMedGoogle ScholarCrossref
13.
Ismail  IA, Kang  HS, Lee  HJ, Kim  JK, Hong  SH.  DJ-1 upregulates breast cancer cell invasion by repressing KLF17 expression.  Br J Cancer. 2014;110(5):1298-1306.PubMedGoogle ScholarCrossref
14.
Looyenga  BD, Furge  KA, Dykema  KJ,  et al.  Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas.  Proc Natl Acad Sci U S A. 2011;108(4):1439-1444.PubMedGoogle ScholarCrossref
15.
Lewis  PA, Manzoni  C.  LRRK2 and human disease: a complicated question or a question of complexes?  Sci Signal. 2012;5(207):pe2.PubMedGoogle ScholarCrossref
16.
Agalliu  I, San Luciano  M, Mirelman  A,  et al.  Higher frequency of certain cancers in LRRK2 G2019S mutation carriers with Parkinson disease: a pooled analysis.  JAMA Neurol. 2015;72(1):58-65.PubMedGoogle ScholarCrossref
17.
Laman  H, Funes  JM, Ye  H,  et al.  Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6.  EMBO J. 2005;24(17):3104-3116.PubMedGoogle ScholarCrossref
18.
Wirdefeldt  K, Adami  HO, Cole  P, Trichopoulos  D, Mandel  J.  Epidemiology and etiology of Parkinson’s disease: a review of the evidence.  Eur J Epidemiol. 2011;26(suppl 1):S1-S58.PubMedGoogle ScholarCrossref
19.
Bajaj  A, Driver  JA, Schernhammer  ES.  Parkinson’s disease and cancer risk: a systematic review and meta-analysis.  Cancer Causes Control. 2010;21(5):697-707.PubMedGoogle ScholarCrossref
20.
Driver  JA.  Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence.  Biogerontology. 2014;15(6):547-557.PubMedGoogle ScholarCrossref
21.
Wirdefeldt  K, Weibull  CE, Chen  H,  et al.  Parkinson’s disease and cancer: A register-based family study.  Am J Epidemiol. 2014;179(1):85-94.PubMedGoogle ScholarCrossref
22.
Olsen  JH, Friis  S, Frederiksen  K, McLaughlin  JK, Mellemkjaer  L, Møller  H.  Atypical cancer pattern in patients with Parkinson’s disease.  Br J Cancer. 2005;92(1):201-205.PubMedGoogle ScholarCrossref
23.
Kareus  SA, Figueroa  KP, Cannon-Albright  LA, Pulst  SM.  Shared predispositions of parkinsonism and cancer: a population-based pedigree-linked study.  Arch Neurol. 2012;69(12):1572-1577.PubMedGoogle ScholarCrossref
24.
Ong  EL, Goldacre  R, Goldacre  M.  Differential risks of cancer types in people with Parkinson’s disease: a national record-linkage study.  Eur J Cancer. 2014;50(14):2456-2462.PubMedGoogle ScholarCrossref
25.
Roberts  SA, Gordenin  DA.  Hypermutation in human cancer genomes: footprints and mechanisms.  Nat Rev Cancer. 2014;14(12):786-800.PubMedGoogle ScholarCrossref
26.
Eifert  C, Powers  RS.  From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets.  Nat Rev Cancer. 2012;12(8):572-578.PubMedGoogle ScholarCrossref
27.
Maris  JM, Knudson  AG.  Revisiting tissue specificity of germline cancer predisposing mutations.  Nat Rev Cancer. 2015;15(2):65-66.PubMedGoogle ScholarCrossref
28.
Lesage  S, Dürr  A, Tazir  M,  et al; French Parkinson’s Disease Genetics Study Group.  LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs.  N Engl J Med. 2006;354(4):422-423.PubMedGoogle ScholarCrossref
29.
Ozelius  LJ, Senthil  G, Saunders-Pullman  R,  et al.  LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews.  N Engl J Med. 2006;354(4):424-425.PubMedGoogle ScholarCrossref
30.
Clark  LN, Wang  Y, Karlins  E,  et al.  Frequency of LRRK2 mutations in early- and late-onset Parkinson disease.  Neurology. 2006;67(10):1786-1791.PubMedGoogle ScholarCrossref
31.
Zabetian  CP, Hutter  CM, Yearout  D,  et al.  LRRK2 G2019S in families with Parkinson disease who originated from Europe and the Middle East: evidence of two distinct founding events beginning two millennia ago.  Am J Hum Genet. 2006;79(4):752-758.PubMedGoogle ScholarCrossref
32.
Paez  JG, Jänne  PA, Lee  JC,  et al.  EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.  Science. 2004;304(5676):1497-1500.PubMedGoogle ScholarCrossref
33.
Shan  Y, Eastwood  MP, Zhang  X,  et al.  Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization.  Cell. 2012;149(4):860-870.PubMedGoogle ScholarCrossref
34.
Red Brewer  M, Yun  CH, Lai  D, Lemmon  MA, Eck  MJ, Pao  W.  Mechanism for activation of mutated epidermal growth factor receptors in lung cancer.  Proc Natl Acad Sci U S A. 2013;110(38):E3595-E3604.PubMedGoogle ScholarCrossref
35.
Mok  TS, Wu  YL, Thongprasert  S,  et al.  Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.  N Engl J Med. 2009;361(10):947-957.PubMedGoogle ScholarCrossref
36.
Fukuoka  M, Yano  S, Giaccone  G,  et al.  Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected].  J Clin Oncol. 2003;21(12):2237-2246.PubMedGoogle ScholarCrossref
37.
Abdulla  MA, Ahmed  I, Assawamakin  A,  et al; HUGO Pan-Asian SNP Consortium; Indian Genome Variation Consortium.  Mapping human genetic diversity in Asia.  Science. 2009;326(5959):1541-1545.PubMedGoogle ScholarCrossref
38.
Lin  CH, Sheu  WHH.  Hypoglycaemic episodes and risk of dementia in diabetes mellitus: 7-year follow-up study.  J Intern Med. 2013;273(1):102-110.PubMedGoogle ScholarCrossref
39.
 Taiwan National Cancer Registry Database.http://tcr.cph.ntu.edu.tw/main.php?Page=N1. Accessed May 17, 2015.
40.
Constantinescu  R, Romer  M, Kieburtz  K; DATATOP Investigators of the Parkinson Study Group.  Malignant melanoma in early Parkinson’s disease: the DATATOP trial.  Mov Disord. 2007;22(5):720-722.PubMedGoogle ScholarCrossref
41.
Schwid  SR, Bausch  J, Oakes  D,  et al; PSG PRECEPT Investigators.  Cancer incidence in a trial of an antiapoptotic agent for Parkinson’s disease.  Mov Disord. 2010;25(12):1801-1808.PubMedGoogle ScholarCrossref
42.
Constantinescu  R, Elm  J, Auinger  P,  et al; NET-PD Investigators.  Malignant melanoma in early-treated Parkinson’s disease: the NET-PD trial.  Mov Disord. 2014;29(2):263-265.PubMedGoogle ScholarCrossref
43.
Tanaka  H, Tsukuma  H, Tomita  S,  et al.  Time trends of incidence for cutaneous melanoma among the Japanese population: an analysis of Osaka Cancer Registry data, 1964-95.  J Epidemiol. 1999;9(6)(suppl):S129-S135.PubMedGoogle ScholarCrossref
44.
Paisán-Ruiz  C, Houlden  H.  Common pathogenic pathways in melanoma and Parkinson disease.  Neurology. 2010;75(18):1653-1655.PubMedGoogle ScholarCrossref
45.
Gao  X, Simon  KC, Han  J, Schwarzschild  MA, Ascherio  A.  Family history of melanoma and Parkinson disease risk.  Neurology. 2009;73(16):1286-1291.PubMedGoogle ScholarCrossref
46.
 Annual Report of Health Promotion Administration. Taiwan: Ministry of Health and Welfare; 2014.
47.
Frigerio  R, Sanft  KR, Grossardt  BR,  et al.  Chemical exposures and Parkinson’s disease: a population-based case-control study.  Mov Disord. 2006;21(10):1688-1692.PubMedGoogle ScholarCrossref
48.
Barnhill  LM, Bronstein  JM.  Pesticides and Parkinson’s disease: is it in your genes?  Neurodegener Dis Manag. 2014;4(3):197-200.PubMedGoogle ScholarCrossref
49.
Rustgi  AK, El-Serag  HB.  Esophageal carcinoma.  N Engl J Med. 2014;371(26):2499-2509.PubMedGoogle ScholarCrossref
50.
Wu  IC, Wu  CC, Lu  CY,  et al.  Substance use (alcohol, areca nut and cigarette) is associated with poor prognosis of esophageal squamous cell carcinoma.  PLoS One. 2013;8(2):e55834.PubMedGoogle ScholarCrossref
51.
Teng  YH, Tan  WJ, Thike  AA,  et al.  Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy.  Breast Cancer Res. 2011;13(2):R35.PubMedGoogle ScholarCrossref
52.
Jacot  W, Lopez-Crapez  E, Thezenas  S,  et al.  Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles.  Breast Cancer Res. 2011;13(6):R133.PubMedGoogle ScholarCrossref
53.
Secq  V, Villeret  J, Fina  F,  et al.  Triple negative breast carcinoma EGFR amplification is not associated with EGFR, Kras or ALK mutations.  Br J Cancer. 2014;110(4):1045-1052.PubMedGoogle ScholarCrossref
54.
Fallon  L, Bélanger  CM, Corera  AT,  et al.  A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling.  Nat Cell Biol. 2006;8(8):834-842.PubMedGoogle ScholarCrossref
55.
Gómez-Suaga  P, Rivero-Ríos  P, Fdez  E,  et al.  LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity.  Hum Mol Genet. 2014;23(25):6779-6796.PubMedGoogle ScholarCrossref
56.
Hinkle  DA, Mullett  SJ, Gabris  BE, Hamilton  RL.  DJ-1 expression in glioblastomas shows positive correlation with p53 expression and negative correlation with epidermal growth factor receptor amplification.  Neuropathology. 2011;31(1):29-37.PubMedGoogle ScholarCrossref
57.
Catalá-López  F, Suárez-Pinilla  M, Suárez-Pinilla  P,  et al.  Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577,013 participants of 50 observational studies.  Psychother Psychosom. 2014;83(2):89-105.PubMedGoogle ScholarCrossref
58.
Benito-León  J, Bermejo-Pareja  F, Morales-González  JM,  et al; Neurological Disorders in Central Spain (NEDICES) Study Group.  Incidence of Parkinson disease and parkinsonism in three elderly populations of central Spain.  Neurology. 2004;62(5):734-741.PubMedGoogle ScholarCrossref
Original Investigation
August 2015

Association Between Parkinson Disease and Risk of Cancer in Taiwan

Author Affiliations
  • 1Taiwan International Graduate Program in Molecular Medicine, Academia Sinica and National Yang-Ming University, Taipei, Taiwan
  • 2Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
  • 3Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
  • 4Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
  • 5Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
  • 6PhD Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
JAMA Oncol. 2015;1(5):633-640. doi:10.1001/jamaoncol.2015.1752
Abstract

Importance  Parkinson disease (PD) has been reported to be associated with a general reduced risk of cancer. These studies were mainly carried out in Western populations and little was known about associations in East Asians.

Objective  To analyze the association between PD and risk of cancer.

Design, Setting, and Participants  In this cohort study, the data were obtained from the Taiwan National Health Insurance Research Database, which contained information on approximately 24.7 million insured individuals. The cohort included individuals with newly diagnosed as having PD between 2004 and 2010. An age- and sex-matched systematic random-sampling method was used for subject selection in the reference non-PD cohort. Multivariate Cox proportional hazard regression analysis was used to determine the effects of PD on the risks of cancer, as shown by hazard ratios (HRs) with 95% CIs.

Main Outcomes and Measures  The Taiwan Population Census and National Cancer Registry Databases were used to identify patients with cancer. The last follow-up date was December 31, 2012.

Results  In 62 023 patients with PD, the HR for all subsequent cancers combined was 1.58 (95% CI, 1.50-1.65). Of the 19 types of cancer, Parkinson disease was not associated with breast, ovarian, or thyroid cancers. Increased HRs were found in the remaining 16 cancers, including malignant brain tumors (HR, 3.42; 95% CI, 1.84-6.38), gastrointestinal tract cancers (esophageal [HR, 1.81; 95% CI, 1.28-2.57], stomach [HR, 1.59; 95% CI, 1.30-1.94], colorectal [HR, 1.47; 95% CI, 1.31-1.65], liver [HR, 1.89; 95% CI, 1.67-2.14]; gallbladder [HR, 1.73; 95% CI, 1.16-2.57], and pancreas [HR, 1.48; 95% CI, 1.09-2.02]) (P < .05 for all comparisons), lung cancers (HR, 1.56; 95% CI, 1.38-1.76), some hormone-related cancers (uterine [HR, 1.83; 95% CI, 1.12-3.01], cervical [HR, 1.36; 95% CI, 1.05-1.76], and prostate [HR, 1.80; 95% CI, 1.52-2.13; P < .05 for all comparisons), urinary tract cancers (kidney and bladder cancers; HRs, 1.59 and 1.99, respectively; P < .001 for both comparisons), lymphoma and/or leukemia (HR, 1.62; 95% CI, 1.31-2.01), melanoma (HR, 2.75; 95% CI, 1.35-5.59), and other skin cancers (HR, 1.81; 95% CI, 1.46-2.23). For hepatocellular carcinoma, the highest HR resided in the 50- to 59-year-old group (HR, 2.57; 95% CI, 1.7-3.89).

Conclusions and Relevance  Our study concludes that PD is is associated with most cancers in Taiwan. Further studies are needed to clarify whether our findings can be applied to other East Asian populations. The differences between our study and most previous cohorts suggest the importance of ethnicity and environmental exposures in disease pathogenesis.

×