Economic Analysis of Prostate-Specific Antigen Screening and Selective Treatment Strategies | Cancer Biomarkers | JAMA Oncology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Moyer  VA; US Preventive Services Task Force.  Screening for prostate cancer: US Preventive Services Task Force recommendation statement.  Ann Intern Med. 2012;157(2):120-134.PubMedGoogle ScholarCrossref
Carter  HB, Albertsen  PC, Barry  MJ,  et al.  Early detection of prostate cancer: AUA guideline.  J Urol. 2013;190(2):419-426.PubMedGoogle ScholarCrossref
Qaseem  A, Barry  MJ, Denberg  TD, Owens  DK, Shekelle  P; Clinical Guidelines Committee of the American College of Physicians.  Screening for prostate cancer: a guidance statement from the Clinical Guidelines Committee of the American College of Physicians.  Ann Intern Med. 2013;158(10):761-769.PubMedGoogle ScholarCrossref
Basch  E, Oliver  TK, Vickers  A,  et al.  Screening for prostate cancer with prostate-specific antigen testing: American Society of Clinical Oncology provisional clinical opinion.  J Clin Oncol. 2012;30(24):3020-3025.PubMedGoogle ScholarCrossref
Andriole  GL, Crawford  ED, Grubb  RL  III,  et al; PLCO Project Team.  Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up.  J Natl Cancer Inst. 2012;104(2):125-132.PubMedGoogle ScholarCrossref
Schröder  FH, Hugosson  J, Roobol  MJ,  et al; ERSPC Investigators.  Prostate-cancer mortality at 11 years of follow-up.  N Engl J Med. 2012;366(11):981-990.PubMedGoogle ScholarCrossref
Schröder  FH, Hugosson  J, Roobol  MJ,  et al; ERSPC Investigators.  Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up.  Lancet. 2014;384(9959):2027-2035.PubMedGoogle ScholarCrossref
Chou  R, LeFevre  ML.  Prostate cancer screening: the evidence, the recommendations, and the clinical implications.  JAMA. 2011;306(24):2721-2722.PubMedGoogle ScholarCrossref
Welch  HG.  A piece of my mind: making the call.  JAMA. 2011;306(24):2649-2650.PubMedGoogle ScholarCrossref
Gulati  R, Mariotto  AB, Chen  S, Gore  JL, Etzioni  R.  Long-term projections of the harm-benefit trade-off in prostate cancer screening are more favorable than previous short-term estimates.  J Clin Epidemiol. 2011;64(12):1412-1417.PubMedGoogle ScholarCrossref
Loeb  S, Vonesh  EF, Metter  EJ, Carter  HB, Gann  PH, Catalona  WJ.  What is the true number needed to screen and treat to save a life with prostate-specific antigen testing?  J Clin Oncol. 2011;29(4):464-467.PubMedGoogle ScholarCrossref
Heijnsdijk  EA, Wever  EM, Auvinen  A,  et al.  Quality-of-life effects of prostate-specific antigen screening.  N Engl J Med. 2012;367(7):595-605.PubMedGoogle ScholarCrossref
Etzioni  R, Gulati  R, Cooperberg  MR, Penson  DM, Weiss  NS, Thompson  IM.  Limitations of basing screening policies on screening trials: the US Preventive Services Task Force and prostate cancer screening.  Med Care. 2013;51(4):295-300.PubMedGoogle ScholarCrossref
Gulati  R, Tsodikov  A, Etzioni  R,  et al.  Expected population impacts of discontinued prostate-specific antigen screening.  Cancer. 2014;120(22):3519-3526.PubMedGoogle ScholarCrossref
Gulati  R, Gore  JL, Etzioni  R.  Comparative effectiveness of alternative prostate-specific antigen–based prostate cancer screening strategies: model estimates of potential benefits and harms.  Ann Intern Med. 2013;158(3):145-153.PubMedGoogle ScholarCrossref
Carlsson  S, Vickers  AJ, Roobol  M,  et al.  Prostate cancer screening: facts, statistics, and interpretation in response to the US Preventive Services Task Force review.  J Clin Oncol. 2012;30(21):2581-2584.PubMedGoogle ScholarCrossref
Vickers  AJ, Ulmert  D, Sjoberg  DD,  et al.  Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study.  BMJ. 2013;346:f2023.PubMedGoogle ScholarCrossref
Wilt  TJ, Harris  RP, Qaseem  A; High Value Care Task Force of the American College of Physicians.  Screening for cancer: advice for high-value care from the American College of Physicians.  Ann Intern Med. 2015;162(10):718-725.PubMedGoogle ScholarCrossref
Ganz  PA, Barry  JM, Burke  W,  et al.  National Institutes of Health State-of-the-Science Conference: role of active surveillance in the management of men with localized prostate cancer.  Ann Intern Med. 2012;156(8):591-595.PubMedGoogle ScholarCrossref
Womble  PR, Montie  JE, Ye  Z, Linsell  SM, Lane  BR, Miller  DC; Michigan Urological Surgery Improvement Collaborative.  Contemporary use of initial active surveillance among men in Michigan with low-risk prostate cancer.  Eur Urol. 2015;67(1):44-50.PubMedGoogle ScholarCrossref
Cooperberg  MR, Carroll  PR.  Trends in management for patients with localized prostate cancer, 1990-2013.  JAMA. 2015;314(1):80-82.PubMedGoogle ScholarCrossref
Gulati  R, Inoue  L, Katcher  J, Hazelton  W, Etzioni  R.  Calibrating disease progression models using population data: a critical precursor to policy development in cancer control.  Biostatistics. 2010;11(4):707-719.PubMedGoogle ScholarCrossref
Etzioni  R, Tsodikov  A, Mariotto  A,  et al.  Quantifying the role of PSA screening in the US prostate cancer mortality decline.  Cancer Causes Control. 2008;19(2):175-181.PubMedGoogle ScholarCrossref
Carroll  PR, Parsons  JK, Andriole  G,  et al; National Comprehensive Cancer Network.  Prostate cancer early detection, version 1.2014. Featured updates to the NCCN guidelines.  J Natl Compr Canc Netw. 2014;12(9):1211-1219.PubMedGoogle Scholar
Schröder  FH, Hugosson  J, Roobol  MJ,  et al; ERSPC Investigators.  Screening and prostate-cancer mortality in a randomized European study.  N Engl J Med. 2009;360(13):1320-1328.PubMedGoogle ScholarCrossref
Cooperberg  MR, Broering  JM, Carroll  PR.  Time trends and local variation in primary treatment of localized prostate cancer.  J Clin Oncol. 2010;28(7):1117-1123.PubMedGoogle ScholarCrossref
Bill-Axelson  A, Holmberg  L, Ruutu  M,  et al; SPCG-4 Investigators.  Radical prostatectomy versus watchful waiting in early prostate cancer.  N Engl J Med. 2011;364(18):1708-1717.PubMedGoogle ScholarCrossref
Cooperberg  MR, Ramakrishna  NR, Duff  SB,  et al.  Primary treatments for clinically localised prostate cancer: a comprehensive lifetime cost-utility analysis.  BJU Int. 2013;111(3):437-450.PubMedGoogle ScholarCrossref
Boorjian  SA, Karnes  RJ, Viterbo  R,  et al.  Long-term survival after radical prostatectomy versus external-beam radiotherapy for patients with high-risk prostate cancer.  Cancer. 2011;117(13):2883-2891.PubMedGoogle ScholarCrossref
Gulati  R, Tsodikov  A, Wever  EM,  et al.  The impact of PLCO control arm contamination on perceived PSA screening efficacy.  Cancer Causes Control. 2012;23(6):827-835.PubMedGoogle ScholarCrossref
Gleason  DF, Mellinger  GT.  Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging.  J Urol. 1974;111(1):58-64.PubMedGoogle Scholar
Stewart  ST, Lenert  L, Bhatnagar  V, Kaplan  RM.  Utilities for prostate cancer health states in men aged 60 and older.  Med Care. 2005;43(4):347-355.PubMedGoogle ScholarCrossref
Centers for Medicare & Medicaid Services. HCPCS general information. Modified December 20, 2015. Accessed August 23, 2014.
Wang  SY, Wang  R, Yu  JB,  et al.  Understanding regional variation in Medicare expenditures for initial episodes of prostate cancer care.  Med Care. 2014;52(8):680-687.PubMedGoogle ScholarCrossref
Hayes  JH, Ollendorf  DA, Pearson  SD,  et al.  Observation versus initial treatment for men with localized, low-risk prostate cancer: a cost-effectiveness analysis.  Ann Intern Med. 2013;158(12):853-860.PubMedGoogle ScholarCrossref
Hayes  JH, Ollendorf  DA, Pearson  SD,  et al.  Active surveillance compared with initial treatment for men with low-risk prostate cancer: a decision analysis.  JAMA. 2010;304(21):2373-2380.PubMedGoogle ScholarCrossref
Mobley  LR, Hoerger  TJ, Wittenborn  JS, Galuska  DA, Rao  JK.  Cost-effectiveness of osteoporosis screening and treatment with hormone replacement therapy, raloxifene, or alendronate.  Med Decis Making. 2006;26(2):194-206.PubMedGoogle ScholarCrossref
Gold  M, Siegel  J, Russell  L, Weinstein  M.  Cost-Effectiveness in Health and Medicine. New York, NY: Oxford University Press; 1996.
O’Hagan  A, McCabe  C, Akehurst  R,  et al.  Incorporation of uncertainty in health economic modelling studies.  Pharmacoeconomics. 2005;23(6):529-536.PubMedGoogle ScholarCrossref
Nadler  E, Eckert  B, Neumann  PJ.  Do oncologists believe new cancer drugs offer good value?  Oncologist. 2006;11(2):90-95.PubMedGoogle ScholarCrossref
Berry  SR, Bell  CM, Ubel  PA,  et al.  Continental divide? the attitudes of US and Canadian oncologists on the costs, cost-effectiveness, and health policies associated with new cancer drugs.  J Clin Oncol. 2010;28(27):4149-4153.PubMedGoogle ScholarCrossref
Neumann  PJ, Palmer  JA, Nadler  E, Fang  C, Ubel  P.  Cancer therapy costs influence treatment: a national survey of oncologists.  Health Aff (Millwood). 2010;29(1):196-202.PubMedGoogle ScholarCrossref
Greenberg  D, Earle  C, Fang  CH, Eldar-Lissai  A, Neumann  PJ.  When is cancer care cost-effective? a systematic overview of cost-utility analyses in oncology.  J Natl Cancer Inst. 2010;102(2):82-88.PubMedGoogle ScholarCrossref
Neumann  PJ, Cohen  JT, Weinstein  MC.  Updating cost-effectiveness: the curious resilience of the $50,000-per-QALY threshold.  N Engl J Med. 2014;371(9):796-797.PubMedGoogle ScholarCrossref
Carlson  JJ, Garrison  LP, Ramsey  SD, Veenstra  DL.  The potential clinical and economic outcomes of pharmacogenomic approaches to EGFR-tyrosine kinase inhibitor therapy in non-small-cell lung cancer.  Value Health. 2009;12(1):20-27.PubMedGoogle ScholarCrossref
Myers  EMA, Lan  S, Posey  RE, Gray  R, Sanders  GD.  Value-of-Information Analysis for Patient-Centered Outcomes Research Prioritization. Washington, DC: Patient-Centered Outcomes Research Institute; 2012.
Wilt  TJ, Brawer  MK, Jones  KM,  et al; Prostate Cancer Intervention versus Observation Trial (PIVOT) Study Group.  Radical prostatectomy versus observation for localized prostate cancer.  N Engl J Med. 2012;367(3):203-213.PubMedGoogle ScholarCrossref
Garg  V, Gu  NY, Borrego  ME, Raisch  DW.  A literature review of cost-effectiveness analyses of prostate-specific antigen test in prostate cancer screening.  Expert Rev Pharmacoecon Outcomes Res. 2013;13(3):327-342.PubMedGoogle ScholarCrossref
Zhang  J, Denton  BT, Balasubramanian  H, Shah  ND, Inman  BA.  Optimization of PSA screening policies: a comparison of the patient and societal perspectives.  Med Decis Making. 2012;32(2):337-349.PubMedGoogle ScholarCrossref
Heijnsdijk  EA, de Carvalho  TM, Auvinen  A,  et al.  Cost-effectiveness of prostate cancer screening: a simulation study based on ERSPC data.  J Natl Cancer Inst. 2015;107(1):366.PubMedGoogle ScholarCrossref
Gulati  R, Wever  EM, Tsodikov  A,  et al.  What if I don’t treat my PSA-detected prostate cancer? answers from three natural history models.  Cancer Epidemiol Biomarkers Prev. 2011;20(5):740-750.PubMedGoogle ScholarCrossref
Wever  EM, Draisma  G, Heijnsdijk  EA,  et al.  Prostate-specific antigen screening in the United States vs in the European Randomized Study of Screening for Prostate Cancer-Rotterdam.  J Natl Cancer Inst. 2010;102(5):352-355.PubMedGoogle ScholarCrossref
Sox  HC.  Quality of life and guidelines for PSA screening.  N Engl J Med. 2012;367(7):669-671.PubMedGoogle ScholarCrossref
Vickers  A, Carlsson  S, Laudone  V, Lilja  H.  It ain’t what you do, it’s the way you do it: five golden rules for transforming prostate-specific antigen screening.  Eur Urol. 2014;66(2):188-190.PubMedGoogle ScholarCrossref
Murphy  DG, Loeb  S.  Prostate cancer: growth of AS in the USA signals reduction in overtreatment.  Nat Rev Urol. 2015;12(11):604-605.PubMedGoogle ScholarCrossref
Original Investigation
July 2016

Economic Analysis of Prostate-Specific Antigen Screening and Selective Treatment Strategies

Author Affiliations
  • 1Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
  • 2Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
  • 3Pharmaceutical Outcomes Research and Policy Program, University of Washington, Seattle
  • 4Department of Urology, University of Washington, Seattle
  • 5Department of Urology, University of California, San Francisco
JAMA Oncol. 2016;2(7):890-898. doi:10.1001/jamaoncol.2015.6275

Importance  Prostate-specific antigen (PSA) screening for prostate cancer is controversial. Experts have suggested more personalized or more conservative strategies to improve benefit-risk tradeoffs, but the value of these strategies—particularly when combined with increased conservative management for low-risk cases—is uncertain.

Objectives  To evaluate the potential cost-effectiveness of plausible PSA screening strategies and to assess the value added by increased use of conservative management among low-risk, screen-detected cases.

Design, Setting, and Participants  A microsimulation model of prostate cancer incidence and mortality was created. A simulated contemporary cohort of US men beginning at 40 years of age underwent 18 strategies for PSA screening. Treatment strategies included (1) contemporary treatment practices based on age and cancer stage and grade observed in the Surveillance, Epidemiology, and End Results program in 2010 or (2) selective treatment practices whereby cases with a Gleason score lower than 7 and clinical T2a stage cancer or lower are treated only after clinical progression, and all other cases undergo contemporary treatment practices. National and trial data on PSA growth, screening and biopsy patterns, incidence of prostate cancer, treatment distributions, treatment efficacy, mortality, health-related quality of life, and direct medical expenditure were analyzed. Data were collected from March 18, 2009, to August 15, 2014, and analyzed from November 20, 2012, to December 11, 2015.

Interventions  Eighteen screening strategies that vary by start and stop age, screening interval, and criteria for biopsy referral and contemporary or selective treatment practices.

Main Outcomes and Measures  Life-years (LYs), quality-adjusted life-years (QALYs), direct medical expenditure, and cost per LY and QALY gained.

Results  All 18 screening strategies were associated with increased LYs (range, 0.03-0.06) and costs ($263-$1371) compared with no screening, with the cost ranging from $7335 to $21 649 per LY. With contemporary treatment, only strategies with biopsy referral for PSA levels higher than 10.0 ng/mL or age-dependent thresholds were associated with increased QALYs (0.002-0.004), and only quadrennial screening of patients aged 55 to 69 years was potentially cost-effective in terms of cost per QALY (incremental cost-effectiveness ratio, $92 446). With selective treatment, all strategies were associated with increased QALYs (0.002-0.004), and several strategies were potentially cost-effective in terms of cost per QALY (incremental cost-effectiveness ratio, $70 831-$136 332).

Conclusions and Relevance  For PSA screening to be cost-effective, it needs to be used conservatively and ideally in combination with a conservative management approach for low-risk disease.