Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non–Small Cell Lung Cancer | Lung Cancer | JAMA Oncology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Miller  KD, Siegel  RL, Lin  CC,  et al.  Cancer treatment and survivorship statistics, 2016.  CA Cancer J Clin. 2016;66(4):271-289. doi:10.3322/caac.21349PubMedGoogle ScholarCrossref
2.
Solomon  BJ, Mok  T, Kim  DW,  et al; PROFILE 1014 Investigators.  First-line crizotinib versus chemotherapy in ALK-positive lung cancer.  N Engl J Med. 2014;371(23):2167-2177. doi:10.1056/NEJMoa1408440PubMedGoogle ScholarCrossref
3.
Yang  JC, Wu  YL, Schuler  M,  et al.  Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials.  Lancet Oncol. 2015;16(2):141-151. doi:10.1016/S1470-2045(14)71173-8PubMedGoogle ScholarCrossref
4.
Reck  M, Heigener  DF, Mok  T, Soria  JC, Rabe  KF.  Management of non–small-cell lung cancer: recent developments.  Lancet. 2013;382(9893):709-719. doi:10.1016/S0140-6736(13)61502-0PubMedGoogle ScholarCrossref
5.
Chan  BA, Hughes  BG.  Targeted therapy for non–small cell lung cancer: current standards and the promise of the future.  Transl Lung Cancer Res. 2015;4(1):36-54.PubMedGoogle Scholar
6.
Kris  MG, Johnson  BE, Berry  LD,  et al.  Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs.  JAMA. 2014;311(19):1998-2006. doi:10.1001/jama.2014.3741PubMedGoogle ScholarCrossref
7.
Ettinger  DS, Wood  DE, Akerley  W,  et al.  NCCN guidelines insights: non–small cell lung cancer, version 4.2016.  J Natl Compr Canc Netw. 2016;14(3):255-264. doi:10.6004/jnccn.2016.0031PubMedGoogle ScholarCrossref
8.
Sholl  LM, Aisner  DL, Varella-Garcia  M,  et al; LCMC Investigators.  Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the Lung Cancer Mutation Consortium Experience.  J Thorac Oncol. 2015;10(5):768-777. doi:10.1097/JTO.0000000000000516PubMedGoogle ScholarCrossref
9.
Zill  OA, Greene  C, Sebisanovic  D,  et al.  Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas.  Cancer Discov. 2015;5(10):1040-1048. doi:10.1158/2159-8290.CD-15-0274PubMedGoogle ScholarCrossref
10.
Gerlinger  M, Rowan  AJ, Horswell  S,  et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.  N Engl J Med. 2012;366(10):883-892. doi:10.1056/NEJMoa1113205PubMedGoogle ScholarCrossref
11.
Newman  AM, Bratman  SV, To  J,  et al.  An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage.  Nat Med. 2014;20(5):548-554. doi:10.1038/nm.3519PubMedGoogle ScholarCrossref
12.
Diaz  LA  Jr, Williams  RT, Wu  J,  et al.  The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers.  Nature. 2012;486(7404):537-540. doi:10.1038/nature11219PubMedGoogle ScholarCrossref
13.
Dawson  SJ, Tsui  DW, Murtaza  M,  et al.  Analysis of circulating tumor DNA to monitor metastatic breast cancer.  N Engl J Med. 2013;368(13):1199-1209. doi:10.1056/NEJMoa1213261PubMedGoogle ScholarCrossref
14.
Couraud  S, Vaca-Paniagua  F, Villar  S,  et al; BioCAST/IFCT-1002 Investigators.  Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002.  Clin Cancer Res. 2014;20(17):4613-4624. doi:10.1158/1078-0432.CCR-13-3063PubMedGoogle ScholarCrossref
15.
Oxnard  GR, Paweletz  CP, Kuang  Y,  et al.  Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA.  Clin Cancer Res. 2014;20(6):1698-1705. doi:10.1158/1078-0432.CCR-13-2482PubMedGoogle ScholarCrossref
16.
Punnoose  EA, Atwal  S, Liu  W,  et al.  Evaluation of circulating tumor cells and circulating tumor DNA in non–small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib.  Clin Cancer Res. 2012;18(8):2391-2401. doi:10.1158/1078-0432.CCR-11-3148PubMedGoogle ScholarCrossref
17.
Kuang  Y, Rogers  A, Yeap  BY,  et al.  Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non–small cell lung cancer.  Clin Cancer Res. 2009;15(8):2630-2636. doi:10.1158/1078-0432.CCR-08-2592PubMedGoogle ScholarCrossref
18.
Guibert  N, Hu  Y, Feeney  N,  et al.  Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer.  Ann Oncol. 2018;29(4):1049-1055. doi:10.1093/annonc/mdy005PubMedGoogle ScholarCrossref
19.
Thompson  JC, Yee  SS, Troxel  AB,  et al.  Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA.  Clin Cancer Res. 2016;22(23):5772-5782. doi:10.1158/1078-0432.CCR-16-1231PubMedGoogle ScholarCrossref
20.
Schwaederlé  MC, Patel  SP, Husain  H,  et al.  Utility of genomic assessment of blood-derived circulating tumor DNA (ctDNA) in patients with advanced lung adenocarcinoma.  Clin Cancer Res. 2017;23(17):5101-5111. doi:10.1158/1078-0432.CCR-16-2497PubMedGoogle ScholarCrossref
21.
Kim  ST, Banks  KC, Lee  S-H,  et al.  Prospective feasibility study for using cell-free circulating tumor DNA–guided therapy in refractory metastatic solid cancers: an interim analysis  [published online June 26, 2017].  JCO Precision Oncology. doi:10.1200/PO.16.00059Google Scholar
22.
Sacher  AG, Paweletz  C, Dahlberg  SE,  et al.  Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer.  JAMA Oncol. 2016;2(8):1014-1022. doi:10.1001/jamaoncol.2016.0173PubMedGoogle ScholarCrossref
23.
Mayo-de-Las-Casas  C, Jordana-Ariza  N, Garzón-Ibañez  M,  et al.  Large scale, prospective screening of EGFR mutations in the blood of advanced NSCLC patients to guide treatment decisions.  Ann Oncol. 2017;28(9):2248-2255. doi:10.1093/annonc/mdx288PubMedGoogle ScholarCrossref
24.
Mok  TSK, Kim  SW, Wu  YL,  et al.  Gefitinib Plus Chemotherapy versus chemotherapy in epidermal growth factor receptor mutation-positive non–small-cell lung cancer resistant to first-line gefitinib (IMPRESS): overall survival and biomarker analyses.  J Clin Oncol. 2017;35(36):4027-4034. doi:10.1200/JCO.2017.73.9250PubMedGoogle ScholarCrossref
25.
Chabon  JJ, Simmons  AD, Lovejoy  AF,  et al.  Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients.  Nat Commun. 2016;7:11815. doi:10.1038/ncomms11815PubMedGoogle ScholarCrossref
26.
Oxnard  GR, Thress  KS, Alden  RS,  et al.  Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non–small-cell lung cancer.  J Clin Oncol. 2016;34(28):3375-3382. doi:10.1200/JCO.2016.66.7162PubMedGoogle ScholarCrossref
27.
von Elm  E, Altman  DG, Egger  M, Pocock  SJ, Gøtzsche  PC, Vandenbroucke  JP; STROBE Initiative.  The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.  Epidemiology. 2007;18(6):800-804. doi:10.1097/EDE.0b013e3181577654PubMedGoogle ScholarCrossref
28.
Karlovich  C, Goldman  JW, Sun  JM,  et al.  Assessment of EGFR mutation status in matched plasma and tumor tissue of NSCLC patients from a phase I study of rociletinib (CO-1686).  Clin Cancer Res. 2016;22(10):2386-2395. doi:10.1158/1078-0432.CCR-15-1260PubMedGoogle ScholarCrossref
29.
Meric-Bernstam  F, Brusco  L, Shaw  K,  et al.  Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials.  J Clin Oncol. 2015;33(25):2753-2762. doi:10.1200/JCO.2014.60.4165PubMedGoogle ScholarCrossref
30.
Hellmann  MD, Ciuleanu  TE, Pluzanski  A,  et al.  Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden.  N Engl J Med. 2018;378(22):2093-2104. doi:10.1056/NEJMoa1801946PubMedGoogle ScholarCrossref
31.
Reckamp  KL, Melnikova  VO, Karlovich  C,  et al.  A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma.  J Thorac Oncol. 2016;11(10):1690-1700. doi:10.1016/j.jtho.2016.05.035PubMedGoogle ScholarCrossref
32.
Sueoka-Aragane  N, Katakami  N, Satouchi  M,  et al; Hanshin-Saga Collaborative Cancer Study Group.  Monitoring EGFR T790M with plasma DNA from lung cancer patients in a prospective observational study.  Cancer Sci. 2016;107(2):162-167. doi:10.1111/cas.12847PubMedGoogle ScholarCrossref
33.
Goldman  JW, Karlovich  C, Sequist  LV,  et al.  EGFR genotyping of matched urine, plasma, and tumor tissue in patients with non–small-cell lung cancer treated with rociletinib, an EGFR tyrosine kinase inhibitor  [published online March 2, 2018].  JCO Precision Oncol. doi:10.1200/PO.17.00116Google Scholar
Original Investigation
October 11, 2018

Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non–Small Cell Lung Cancer

Author Affiliations
  • 1Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
  • 2Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia
  • 3Division of Pulmonary, Allergy, and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
  • 4Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia
  • 5Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia
  • 6Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia
JAMA Oncol. 2019;5(2):173-180. doi:10.1001/jamaoncol.2018.4305
Key Points

Question  Does adding plasma-based sequencing to tissue next-generation sequencing improve mutation detection for patients with non–small cell lung cancer?

Findings  In this single-center cohort study of 323 patients with non–small cell lung cancer, 229 had concurrent plasma and tissue next-generation sequencing or were unable to complete tissue testing. Tissue alone detected targetable mutations for 47 patients (20.5%), whereas plasma sequencing increased targetable mutation detection to 82 (35.8%); 36 of 42 patients (85.7%) who received plasma next-generation sequencing–indicated therapy achieved a complete or a partial response or stable disease.

Meaning  Adding plasma next-generation sequencing testing to the routine management of metastatic non–small cell lung cancer appears to increase targetable mutation detection and improve delivery of targeted therapy.

Abstract

Importance  The clinical implications of adding plasma-based circulating tumor DNA next-generation sequencing (NGS) to tissue NGS for targetable mutation detection in non–small cell lung cancer (NSCLC) have not been formally assessed.

Objective  To determine whether plasma NGS testing was associated with improved mutation detection and enhanced delivery of personalized therapy in a real-world clinical setting.

Design, Setting, and Participants  This prospective cohort study enrolled 323 patients with metastatic NSCLC who had plasma testing ordered as part of routine clinical management. Plasma NGS was performed using a 73-gene commercial platform. Patients were enrolled at the Hospital of the University of Pennsylvania from April 1, 2016, through January 2, 2018. The database was locked for follow-up and analyses on January 2, 2018, with a median follow-up of 7 months (range, 1-21 months).

Main Outcomes and Measures  The number of patients with targetable alterations detected with plasma and tissue NGS; the association between the allele fractions (AFs) of mutations detected in tissue and plasma; and the association of response rate with the plasma AF of the targeted mutations.

Results  Among the 323 patients with NSCLC (60.1% female; median age, 65 years [range, 33-93 years]), therapeutically targetable mutations were detected in EGFR, ALK, MET, BRCA1, ROS1, RET, ERBB2, or BRAF for 113 (35.0%) overall. Ninety-four patients (29.1%) had plasma testing only at the discretion of the treating physician or patient preference. Among the 94 patients with plasma testing alone, 31 (33.0%) had a therapeutically targetable mutation detected, thus obviating the need for an invasive biopsy. Among the remaining 229 patients who had concurrent plasma and tissue NGS or were unable to have tissue NGS, a therapeutically targetable mutation was detected in tissue alone for 47 patients (20.5%), whereas the addition of plasma testing increased this number to 82 (35.8%). Thirty-six of 42 patients (85.7%) who received a targeted therapy based on the plasma result achieved a complete or a partial response or stable disease. The plasma-based targeted mutation AF had no correlation with depth of Response Evaluation Criteria in Solid Tumors response (r = −0.121; P = .45).

Conclusions and Relevance  Integration of plasma NGS testing into the routine management of stage IV NSCLC demonstrates a marked increase of the detection of therapeutically targetable mutations and improved delivery of molecularly guided therapy.

×