Association of Inherited Pathogenic Variants in Checkpoint Kinase 2 (CHEK2) With Susceptibility to Testicular Germ Cell Tumors | Genetics and Genomics | JAMA Oncology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Ruf  CG, Isbarn  H, Wagner  W, Fisch  M, Matthies  C, Dieckmann  KP.  Changes in epidemiologic features of testicular germ cell cancer: age at diagnosis and relative frequency of seminoma are constantly and significantly increasing.  Urol Oncol. 2014;32(1):33.e1-33.e6. doi:10.1016/j.urolonc.2012.12.002PubMedGoogle ScholarCrossref
2.
Le Cornet  C, Lortet-Tieulent  J, Forman  D,  et al.  Testicular cancer incidence to rise by 25% by 2025 in Europe? model-based predictions in 40 countries using population-based registry data.  Eur J Cancer. 2014;50(4):831-839. doi:10.1016/j.ejca.2013.11.035PubMedGoogle ScholarCrossref
3.
Litchfield  K, Thomsen  H, Mitchell  JS,  et al.  Quantifying the heritability of testicular germ cell tumour using both population-based and genomic approaches.  Sci Rep. 2015;5:13889. doi:10.1038/srep13889PubMedGoogle ScholarCrossref
4.
Litchfield  K, Loveday  C, Levy  M,  et al.  Large-scale sequencing of testicular germ cell tumour (TGCT) cases excludes major TGCT predisposition gene.  Eur Urol. 2018;73(6):828-831. doi:10.1016/j.eururo.2018.01.021PubMedGoogle ScholarCrossref
5.
Litchfield  K, Levy  M, Huddart  RA, Shipley  J, Turnbull  C.  The genomic landscape of testicular germ cell tumours: from susceptibility to treatment.  Nat Rev Urol. 2016;13(7):409-419. doi:10.1038/nrurol.2016.107PubMedGoogle ScholarCrossref
6.
Litchfield  K, Holroyd  A, Lloyd  A,  et al.  Identification of four new susceptibility loci for testicular germ cell tumour.  Nat Commun. 2015;6:8690. doi:10.1038/ncomms9690PubMedGoogle ScholarCrossref
7.
Litchfield  K, Levy  M, Orlando  G,  et al; UK Testicular Cancer Collaboration; PRACTICAL Consortium.  Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor.  Nat Genet. 2017;49(7):1133-1140. doi:10.1038/ng.3896PubMedGoogle ScholarCrossref
8.
Taylor-Weiner  A, Zack  T, O’Donnell  E,  et al.  Genomic evolution and chemoresistance in germ-cell tumours.  Nature. 2016;540(7631):114-118. doi:10.1038/nature20596PubMedGoogle ScholarCrossref
9.
Chung  CC, Kanetsky  PA, Wang  Z,  et al.  Meta-analysis identifies four new loci associated with testicular germ cell tumor.  Nat Genet. 2013;45(6):680-685. doi:10.1038/ng.2634PubMedGoogle ScholarCrossref
10.
Rahman  N.  Realizing the promise of cancer predisposition genes.  Nature. 2014;505(7483):302-308. doi:10.1038/nature12981PubMedGoogle ScholarCrossref
11.
Lek  M, Karczewski  KJ, Minikel  EV,  et al; Exome Aggregation Consortium.  Analysis of protein-coding genetic variation in 60,706 humans.  Nature. 2016;536(7616):285-291. doi:10.1038/nature19057PubMedGoogle ScholarCrossref
12.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.  JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053PubMedGoogle ScholarCrossref
13.
Rehm  HL, Berg  JS, Brooks  LD,  et al; ClinGen.  ClinGen—the Clinical Genome Resource.  N Engl J Med. 2015;372(23):2235-2242. doi:10.1056/NEJMsr1406261PubMedGoogle ScholarCrossref
14.
Sodha  N, Mantoni  TS, Tavtigian  SV, Eeles  R, Garrett  MD.  Rare germ line CHEK2 variants identified in breast cancer families encode proteins that show impaired activation.  Cancer Res. 2006;66(18):8966-8970. doi:10.1158/0008-5472.CAN-06-1990PubMedGoogle ScholarCrossref
15.
Chrisanthar  R, Knappskog  S, Løkkevik  E,  et al.  CHEK2 mutations affecting kinase activity together with mutations in TP53 indicate a functional pathway associated with resistance to epirubicin in primary breast cancer.  PLoS One. 2008;3(8):e3062. doi:10.1371/journal.pone.0003062PubMedGoogle ScholarCrossref
16.
Liu  C, Wang  Y, Wang  QS, Wang  YJ.  The CHEK2 I157T variant and breast cancer susceptibility: a systematic review and meta-analysis.  Asian Pac J Cancer Prev. 2012;13(4):1355-1360. doi:10.7314/APJCP.2012.13.4.1355PubMedGoogle ScholarCrossref
17.
Liu  C, Wang  QS, Wang  YJ.  The CHEK2 I157T variant and colorectal cancer susceptibility: a systematic review and meta-analysis.  Asian Pac J Cancer Prev. 2012;13(5):2051-2055. doi:10.7314/APJCP.2012.13.5.2051PubMedGoogle ScholarCrossref
18.
Tung  N, Domchek  SM, Stadler  Z,  et al.  Counselling framework for moderate-penetrance cancer-susceptibility mutations.  Nat Rev Clin Oncol. 2016;13(9):581-588. doi:10.1038/nrclinonc.2016.90PubMedGoogle ScholarCrossref
19.
McGlynn  KA, Devesa  SS, Graubard  BI, Castle  PE.  Increasing incidence of testicular germ cell tumors among black men in the United States.  J Clin Oncol. 2005;23(24):5757-5761. doi:10.1200/JCO.2005.08.227PubMedGoogle ScholarCrossref
20.
Lee  JS, Collins  KM, Brown  AL, Lee  CH, Chung  JH.  hCds1-Mediated phosphorylation of BRCA1 regulates the DNA damage response.  Nature. 2000;404(6774):201-204. doi:10.1038/35004614PubMedGoogle ScholarCrossref
21.
Falck  J, Mailand  N, Syljuåsen  RG, Bartek  J, Lukas  J.  The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis.  Nature. 2001;410(6830):842-847. doi:10.1038/35071124PubMedGoogle ScholarCrossref
22.
Chen  L, Gilkes  DM, Pan  Y, Lane  WS, Chen  J.  ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.  EMBO J. 2005;24(19):3411-3422. doi:10.1038/sj.emboj.7600812PubMedGoogle ScholarCrossref
23.
Hale  V, Weischer  M, Park  JY.  CHEK2 1100delC mutation and risk of prostate cancer.  Prostate Cancer. 2014;2014:294575. doi:10.1155/2014/294575PubMedGoogle ScholarCrossref
24.
Xiang  HP, Geng  XP, Ge  WW, Li  H.  Meta-analysis of CHEK2 1100delC variant and colorectal cancer susceptibility.  Eur J Cancer. 2011;47(17):2546-2551. doi:10.1016/j.ejca.2011.03.025PubMedGoogle ScholarCrossref
25.
AlDubayan  SH, Giannakis  M, Moore  ND,  et al.  Inherited DNA-repair defects in colorectal cancer.  Am J Hum Genet. 2018;102(3):401-414. doi:10.1016/j.ajhg.2018.01.018PubMedGoogle ScholarCrossref
26.
Nevanlinna  H, Bartek  J.  The CHEK2 gene and inherited breast cancer susceptibility.  Oncogene. 2006;25(43):5912-5919. doi:10.1038/sj.onc.1209877PubMedGoogle ScholarCrossref
27.
Cai  Z, Chehab  NH, Pavletich  NP.  Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase.  Mol Cell. 2009;35(6):818-829. doi:10.1016/j.molcel.2009.09.007PubMedGoogle ScholarCrossref
28.
Han  FF, Guo  CL, Liu  LH.  The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis.  DNA Cell Biol. 2013;32(6):329-335. doi:10.1089/dna.2013.1970PubMedGoogle ScholarCrossref
29.
Bartkova  J, Falck  J, Rajpert-De Meyts  E, Skakkebaek  NE, Lukas  J, Bartek  J.  Chk2 tumour suppressor protein in human spermatogenesis and testicular germ-cell tumours.  Oncogene. 2001;20(41):5897-5902. doi:10.1038/sj.onc.1204746PubMedGoogle ScholarCrossref
30.
Bolcun-Filas  E, Rinaldi  VD, White  ME, Schimenti  JC.  Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway.  Science. 2014;343(6170):533-536. doi:10.1126/science.1247671PubMedGoogle ScholarCrossref
31.
Pritchard  CC, Mateo  J, Walsh  MF,  et al.  Inherited DNA-repair gene mutations in men with metastatic prostate cancer.  N Engl J Med. 2016;375(5):443-453. doi:10.1056/NEJMoa1603144PubMedGoogle ScholarCrossref
32.
Litchfield  K, Levy  M, Dudakia  D,  et al.  Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility.  Nat Commun. 2016;7:13840. doi:10.1038/ncomms13840PubMedGoogle ScholarCrossref
Original Investigation
January 24, 2019

Association of Inherited Pathogenic Variants in Checkpoint Kinase 2 (CHEK2) With Susceptibility to Testicular Germ Cell Tumors

Author Affiliations
  • 1Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
  • 2Cancer Program, the Broad Institute of MIT and Harvard, Cambridge, Massachusetts
  • 3Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
  • 4Department of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
  • 5Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • 6Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
  • 7Division of Medical Oncology, Urogenital Unit, Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
  • 8Department of Urology, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
  • 9Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
  • 10Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
  • 11Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
  • 12Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
  • 13Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia
  • 14Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
  • 15Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
  • 16Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
JAMA Oncol. 2019;5(4):514-522. doi:10.1001/jamaoncol.2018.6477
Key Points

Question  Do inherited pathogenic variants in DNA repair genes confer higher susceptibility to testicular germ cell tumors?

Findings  In this multistage case-control study involving 884 men, carriers of germline pathogenic variants in CHEK2 were 4 to 6 times more likely to develop testicular germ cell tumors and, on average, had a 6-year earlier age of presentation than carriers of the wild-type CHEK2 alleles.

Meaning  Inherited CHEK2 mutations are high-risk drivers of susceptibility to testicular germ cell tumors and might be informative for the clinical cancer-risk management of mutation carriers and their at-risk family members.

Abstract

Importance  Approximately 50% of the risk for the development of testicular germ cell tumors (TGCTs) is estimated to be heritable, but no mendelian TGCT predisposition genes have yet been identified. It is hypothesized that inherited pathogenic DNA repair gene (DRG) alterations may drive susceptibility to TGCTs.

Objective  To systematically evaluate the enrichment of germline pathogenic variants in the mendelian cancer predisposition DRGs in patients with TGCTs vs healthy controls.

Design, Setting, and Participants  A case-control enrichment analysis was performed from January 2016 to May 2018 to screen for 48 DRGs in 205 unselected men with TGCT and 27 173 ancestry-matched cancer-free individuals from the Exome Aggregation Consortium cohort in the discovery stage. Significant findings were selectively replicated in independent cohorts of 448 unselected men with TGCTs and 442 population-matched controls, as well as 231 high-risk men with TGCTs and 3090 ancestry-matched controls. Statistical analysis took place from January to May 2018.

Main Outcomes and Measures  Gene-level enrichment analysis of germline pathogenic variants in individuals with TGCTs relative to cancer-free controls.

Results  Among 205 unselected men with TGCTs (mean [SD] age, 33.04 [9.67] years), 22 pathogenic germline DRG variants, one-third of which were in CHEK2 (OMIM 604373), were identified in 20 men (9.8%; 95% CI, 6.1%-14.7%). Unselected men with TGCTs were approximately 4 times more likely to carry germline loss-of-function CHEK2 variants compared with cancer-free individuals from the Exome Aggregation Consortium cohort (odds ratio [OR], 3.87; 95% CI, 1.65-8.86; nominal P = .006; q = 0.018). Similar enrichment was also seen in an independent cohort of 448 unselected Croatian men with TGCTs (mean [SD] age, 31.98 [8.11] years) vs 442 unselected Croatian men without TGCTs (at least 50 years of age at time of sample collection) (OR, >1.4; P = .03) and 231 high-risk men with TGCTs (mean [SD] age, 31.54 [9.24] years) vs 3090 men (all older than 50 years) from the Penn Medicine Biobank (OR, 6.30; 95% CI, 2.34-17.31; P = .001). The low-penetrance CHEK2 variant (p.Ile157Thr) was found to be a Croatian founder TGCT risk variant (OR, 3.93; 95% CI, 1.53-9.95; P = .002). Individuals with the pathogenic CHEK2 loss-of-function variants developed TGCTs 6 years earlier than individuals with CHEK2 wild-type alleles (5.95 years; 95% CI, 1.48-10.42; P = .009).

Conclusions and Relevance  This multicenter case-control analysis of men with or without TGCTs provides evidence for CHEK2 as a novel moderate-penetrance TGCT susceptibility gene, with potential clinical utility. In addition to highlighting DNA-repair deficiency as a potential mechanism driving TGCT susceptibility, this analysis also provides new avenues to explore management strategies and biological investigations for high-risk individuals.

×