Cost-effectiveness of Tisagenlecleucel vs Standard Care in High-risk Relapsed Pediatric Acute Lymphoblastic Leukemia in Canada | Pediatric Cancer | JAMA Oncology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Siegel  DA, King  J, Tai  E, Buchanan  N, Ajani  UA, Li  J.  Cancer incidence rates and trends among children and adolescents in the United States, 2001-2009.  Pediatrics. 2014;134(4):e945-e955. doi:10.1542/peds.2013-3926PubMedGoogle ScholarCrossref
2.
Linabery  AM, Ross  JA.  Trends in childhood cancer incidence in the US (1992-2004).  Cancer. 2008;112(2):416-432. doi:10.1002/cncr.23169PubMedGoogle ScholarCrossref
3.
American Cancer Society. Cancer facts & figures 2014. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2014.html. Accessed December 9, 2019.
4.
Hunger  SP, Lu  X, Devidas  M,  et al.  Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group.  J Clin Oncol. 2012;30(14):1663-1669. doi:10.1200/JCO.2011.37.8018PubMedGoogle ScholarCrossref
5.
Cools  J.  Improvements in the survival of children and adolescents with acute lymphoblastic leukemia.  Haematologica. 2012;97(5):635. doi:10.3324/haematol.2012.068361PubMedGoogle ScholarCrossref
6.
Nguyen  K, Devidas  M, Cheng  S-C,  et al; Children’s Oncology Group.  Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study.  Leukemia. 2008;22(12):2142-2150. doi:10.1038/leu.2008.251PubMedGoogle ScholarCrossref
7.
Bhojwani  D, Pui  C-H.  Relapsed childhood acute lymphoblastic leukaemia.  Lancet Oncol. 2013;14(6):e205-e217. doi:10.1016/S1470-2045(12)70580-6PubMedGoogle ScholarCrossref
8.
Locatelli  F, Schrappe  M, Bernardo  ME, Rutella  S.  How I treat relapsed childhood acute lymphoblastic leukemia.  Blood. 2012;120(14):2807-2816. doi:10.1182/blood-2012-02-265884PubMedGoogle ScholarCrossref
9.
Crotta  A, Zhang  J, Keir  C.  Survival after stem-cell transplant in pediatric and young-adult patients with relapsed and refractory B-cell acute lymphoblastic leukemia.  Curr Med Res Opin. 2018;34(3):435-440. doi:10.1080/03007995.2017.1384373PubMedGoogle ScholarCrossref
10.
Lin  Y-F, Lairson  DR, Chan  W,  et al.  The costs and cost-effectiveness of allogeneic peripheral blood stem cell transplantation versus bone marrow transplantation in pediatric patients with acute leukemia.  Biol Blood Marrow Transplant. 2010;16(9):1272-1281. doi:10.1016/j.bbmt.2010.03.016PubMedGoogle ScholarCrossref
11.
Pidala  J.  Graft-vs-host disease following allogeneic hematopoietic cell transplantation.  Cancer Control. 2011;18(4):268-276. doi:10.1177/107327481101800407PubMedGoogle ScholarCrossref
12.
Baird  K, Cooke  K, Schultz  KR.  Chronic graft-versus-host disease (GVHD) in children.  Pediatr Clin North Am. 2010;57(1):297-322. doi:10.1016/j.pcl.2009.11.003PubMedGoogle ScholarCrossref
13.
Ontario Ministry of Health and Long Term Care. Health data branch web portal. https://hsim.health.gov.on.ca/hdbportal/. Accessed December 9, 2019.
14.
Maude  SL, Frey  N, Shaw  PA,  et al.  Chimeric antigen receptor T cells for sustained remissions in leukemia.  N Engl J Med. 2014;371(16):1507-1517. doi:10.1056/NEJMoa1407222PubMedGoogle ScholarCrossref
15.
Singh  N, Frey  NV, Grupp  SA, Maude  SL.  CAR T cell therapy in acute lymphoblastic leukemia and potential for chronic lymphocytic leukemia.  Curr Treat Options Oncol. 2016;17(6):28. doi:10.1007/s11864-016-0406-4PubMedGoogle ScholarCrossref
16.
Maude  SL, Teachey  DT, Porter  DL, Grupp  SA.  CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia.  Blood. 2015;125(26):4017-4023. doi:10.1182/blood-2014-12-580068PubMedGoogle ScholarCrossref
17.
Maude  SL, Laetsch  TW, Buechner  J,  et al.  Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.  N Engl J Med. 2018;378(5):439-448. doi:10.1056/NEJMoa1709866PubMedGoogle ScholarCrossref
18.
Bach  PB, Giralt  SA, Saltz  LB.  FDA approval of tisagenlecleucel: promise and complexities of a $475 000 cancer drug.  JAMA. 2017;318(19):1861-1862. doi:10.1001/jama.2017.15218PubMedGoogle ScholarCrossref
19.
Bach  PB.  National coverage analysis of CAR-T therapies: policy, evidence, and payment.  N Engl J Med. 2018;379(15):1396-1398. doi:10.1056/NEJMp1807382PubMedGoogle ScholarCrossref
20.
Prasad  V.  immunotherapy: tisagenlecleucel: the first approved CAR-T-cell therapy: implications for payers and policy makers.  Nat Rev Clin Oncol. 2018;15(1):11-12. doi:10.1038/nrclinonc.2017.156PubMedGoogle ScholarCrossref
21.
Lin  JK, Lerman  BJ, Barnes  JI,  et al Cost effectiveness of chimeric antigen receptor T-cell therapy in relapsed or refractory pediatric B-cell acute lymphoblastic leukemia.  J Clin Oncol. 2018:JCO2018790642. doi:10.1200/JCO.2018.79.0642Google Scholar
22.
Whittington  MD, McQueen  RB, Ollendorf  DA,  et al.  Long-term survival and value of chimeric antigen receptor T-cell therapy for pediatric patients with relapsed or refractory leukemia.  JAMA Pediatr. 2018;172(12):1161-1168. doi:10.1001/jamapediatrics.2018.2530PubMedGoogle ScholarCrossref
23.
Novartis Pharmaceuticals Canada. Product monograph including patient medication information: KYMRIAH. Published September 5, 2018. https://pdf.hres.ca/dpd_pm/00047188.PDF. Accessed December 9, 2019.
24.
CADTH. Guidelines for the Economic Evaluation of Health Technologies: Canada—4th Edition. March 2017. https://www.cadth.ca/dv/guidelines-economic-evaluation-health-technologies-canada-4th-edition. Accessed December 10, 2019.
25.
Williams  C, Lewsey  JD, Briggs  AH, Mackay  DF.  Cost-effectiveness analysis in R using a multi-state modeling survival analysis framework: a tutorial.  Med Decis Making. 2017;37(4):340-352. doi:10.1177/0272989X16651869PubMedGoogle ScholarCrossref
26.
Maude  SL, Shpall  EJ, Grupp  SA.  Chimeric antigen receptor T-cell therapy for ALL.  Hematology Am Soc Hematol Educ Program. 2014;2014(1):559-564. doi:10.1182/asheducation-2014.1.559PubMedGoogle ScholarCrossref
27.
Costa  V, McGregor  M, Laneuville  P, Brophy  JM.  The cost-effectiveness of stem cell transplantations from unrelated donors in adult patients with acute leukemia.  Value Health. 2007;10(4):247-255. doi:10.1111/j.1524-4733.2007.00180.xPubMedGoogle ScholarCrossref
28.
Kelly  MJ, Pauker  SG, Parsons  SK.  Using nonrandomized studies to inform complex clinical decisions: the thorny issue of cranial radiation therapy for T-cell acute lymphoblastic leukemia.  Pediatr Blood Cancer. 2015;62(5):790-797. doi:10.1002/pbc.25451PubMedGoogle ScholarCrossref
29.
Sung  L, Yanofsky  R, Klaassen  RJ,  et al.  Quality of life during active treatment for pediatric acute lymphoblastic leukemia.  Int J Cancer. 2011;128(5):1213-1220. doi:10.1002/ijc.25433PubMedGoogle ScholarCrossref
30.
Novartis. Oncologic drugs advisory committee briefing document: tisagenlecleucel (ctl019) for the treatment of pediatric and young adult patients with relapsed/refractory B-cell acute lymphoblastic leukemia. July 12, 2017. https://www.fda.gov/media/106093/download. Accessed December 10, 2019.
31.
Lee  DW, Kochenderfer  JN, Stetler-Stevenson  M,  et al.  T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.  Lancet. 2015;385(9967):517-528. doi:10.1016/S0140-6736(14)61403-3Google ScholarCrossref
32.
Ontario Ministry of Health and Long Term Care. Ontario drug formulary. https://www.formulary.health.gov.on.ca/formulary/. Accessed December 10, 2019.
33.
Kurosawa  S, Yamaguchi  T, Mori  T,  et al.  Patient-reported quality of life after allogeneic hematopoietic cell transplantation or chemotherapy for acute leukemia.  Bone Marrow Transplant. 2015;50(9):1241-1249. doi:10.1038/bmt.2015.137PubMedGoogle ScholarCrossref
34.
Lawitschka  A, Güclü  ED, Varni  JW,  et al.  Health-related quality of life in pediatric patients after allogeneic SCT: development of the PedsQL Stem Cell Transplant module and results of a pilot study.  Bone Marrow Transplant. 2014;49(8):1093-1097. doi:10.1038/bmt.2014.96PubMedGoogle ScholarCrossref
35.
Canadian Institute for Health Informatics. Cost of a standard hospital stay details for hospital for sick children. https://yourhealthsystem.cihi.ca/hsp/indepth?lang=en#/indicator/015/4/O5109/. Accessed December 13, 2019.
36.
Hettle  R, Corbett  M, Hinde  S,  et al.  The assessment and appraisal of regenerative medicines and cell therapy products: an exploration of methods for review, economic evaluation and appraisal.  Health Technol Assess. 2017;21(7):1-204. doi:10.3310/hta21070PubMedGoogle ScholarCrossref
37.
Saito  AM, Cutler  C, Zahrieh  D,  et al Costs of allogeneic hematopoietic cell transplantation with high-dose regimens.  Biol Blood Marrow Transplant. 2008;14(2):197-207. doi:10.1016/j.bbmt.2007.10.010Google ScholarCrossref
38.
Furlong  W, Rae  C, Feeny  D,  et al.  Health-related quality of life among children with acute lymphoblastic leukemia.  Pediatr Blood Cancer. 2012;59(4):717-724. doi:10.1002/pbc.24096PubMedGoogle ScholarCrossref
39.
MacArthur  AC, Spinelli  JJ, Rogers  PC, Goddard  KJ, Abanto  ZU, McBride  ML.  Mortality among 5-year survivors of cancer diagnosed during childhood or adolescence in British Columbia, Canada.  Pediatr Blood Cancer. 2007;48(4):460-467. doi:10.1002/pbc.20922PubMedGoogle ScholarCrossref
40.
Novartis pivotal CTL019 6-month follow-up data show durable remission rates in children, young adults with r/r B-cell ALL [press release]. Basel, Switzerland: Novartis; June 23, 2017.
41.
Food and Drug Administration Center for Drug Evaluation and Research. Oncologic drug advisory committee (ODAC) morning session. July 12, 2017. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/OncologicDrugsAdvisoryCommittee/UCM573720.pdf. Accessed December 13, 2019.
42.
Szabo  L. New gene therapy treatment could hit $1M per patient because of additional costs. USA Today. October 16, 2017. https://www.usatoday.com/story/news/2017/10/16/new-gene-therapy-treatment/769240001/. Accessed December 10, 2019.
43.
Porter  D, Frey  N, Wood  PA, Weng  Y, Grupp  SA.  Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel.  J Hematol Oncol. 2018;11(1):35. doi:10.1186/s13045-018-0571-yPubMedGoogle ScholarCrossref
44.
Fenwick  E, Claxton  K, Sculpher  M.  Representing uncertainty: the role of cost-effectiveness acceptability curves.  Health Econ. 2001;10(8):779-787. doi:10.1002/hec.635PubMedGoogle ScholarCrossref
45.
Nelson  AS, Ashton  LJ, Vajdic  CM,  et al; CAST study investigators.  Second cancers and late mortality in Australian children treated by allogeneic HSCT for haematological malignancy.  Leukemia. 2015;29(2):441-447. doi:10.1038/leu.2014.203PubMedGoogle ScholarCrossref
46.
Neumann  PJ, Cohen  JT, Weinstein  MC.  Updating cost-effectiveness–the curious resilience of the $50,000-per-QALY threshold.  N Engl J Med. 2014;371(9):796-797. doi:10.1056/NEJMp1405158PubMedGoogle ScholarCrossref
47.
Grady  D. FDA panel recommends approval for gene-altering leukemia treatment. The New York Times. July 12, 2017. https://www.nytimes.com/2017/07/12/health/fda-novartis-leukemia-gene-medicine.html. Accessed December 10, 2019.
48.
CADTH. Tisagenlecleucel for acute lymphoblastic leukemia and diffuse large B-cell lymphoma: clinical report. January 2019. https://cadth.ca/sites/default/files/pdf/car-t/op0538-tisagenlecleucel-clinical-report_jan2019.pdf. Accessed December 10, 2019.
49.
Walton  M, Sharif  S, Simmonds  M, Claxton  L, Hodgson  R.  Tisagenlecleucel for the treatment of relapsed or refractory B-cell acute lymphoblastic leukaemia in people aged up to 25 years: an evidence review group perspective of a NICE single technology appraisal.  Pharmacoeconomics. 2019;37(10):1209-1217. doi:10.1007/s40273-019-00799-0Google ScholarCrossref
50.
Jacobson  C, Emmert  A, Rosenthal  MB.  CAR T-cell therapy: a microcosm for the challenges ahead in Medicare  [published online July 29, 2019].  JAMA. doi:10.1001/jama.2019.10194PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    January 23, 2020

    Cost-effectiveness of Tisagenlecleucel vs Standard Care in High-risk Relapsed Pediatric Acute Lymphoblastic Leukemia in Canada

    Author Affiliations
    • 1Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
    • 2Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
    • 3Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
    • 4Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
    • 5Pediatric Oncology Group of Ontario, Toronto, Ontario, Canada
    JAMA Oncol. 2020;6(3):393-401. doi:10.1001/jamaoncol.2019.5909
    Key Points

    Question  What is the value of the novel immunotherapy, tisagenlecleucel, compared with current standard care for eligible pediatric patients with relapsed acute lymphoblastic leukemia in Canada?

    Findings  In this study of 3 pooled clinical trials of 192 patients and cancer registry of 118 patients, accounting for the lifetime quality-adjusted life-years and total cost of tisagenlecleucel compared with current standard care resulted in an incremental cost per quality-adjusted life-year gain of tisagenlecleucel ranging from CaD $71 000 (US $53 933) to CaD $281 000 (US $213 453), based on assumed cure rates of 40% to 10%.

    Meaning  Given the current list price of tisagenlecleucel and its currently known effectiveness, tisagenlecleucel had an incremental cost per quality-adjusted life-year gain in the upper ranges of typical willingness-to-pay thresholds; determining if this product is cost-effective is highly dependent on the assumed cure rate.

    Abstract

    Importance  Tisagenlecleucel, a chimeric antigen receptor T-cell therapy for relapsed or refractory pediatric acute lymphoblastic leukemia, has been approved for use in multiple jurisdictions. The public list price is US $475 000, or more than CaD $600 000. Assessing the cost-effectiveness of tisagenlecleucel is necessary to inform policy makers on the economic value of this treatment.

    Objective  To assess the value for money of tisagenlecleucel compared with current standard care for tisagenlecleucel-eligible pediatric patients with acute lymphoblastic leukemia under unknown long-term effectiveness.

    Design, Setting, and Participants  A cost-utility analysis of tisagenlecleucel compared with current standard care using a Canadian population-based registry of pediatric patients with acute lymphoblastic leukemia was performed. Results from 3 pooled single-arm tisagenlecleucel clinical trials and a provincial pediatric cancer registry were combined to create treatment and control arms, respectively. The population-based control arm consisted of patients meeting clinical trial inclusion and exclusion criteria, starting at second relapse. Multistate and individual-level simulation modeling were combined to predict patient lifetime health trajectories by treatment strategy. Tisagenlecleucel efficacy was modeled across long-term cure rates, from 10% to 40%, to account for limited information on its long-term effectiveness. Uncertainty was tested with 1-way and probabilistic sensitivity analysis. Data were collected in September 2017, and analysis began in December 2017.

    Exposures  Tisagenlecleucel compared with current standard care for tisagenlecleucel-eligible patients.

    Main Outcomes and Measures  Relative health care costs, survival gains, and quality-adjusted life-years (QALYs) between tisagenlecleucel and current standard care.

    Results  The treatment and control arms were modeled on 192 and 118 patients, respectively. The mean (SD) age of control individuals was 10 (4.25) years, and the mean (SD) age of the pooled clinical trial sample was 11 (6) years. The control individuals had 78 boys (66%), and the pooled clinical trial sample had 102 boys (53%). Treatment with tisagenlecleucel was associated with an additional 2.14 to 9.85 life years or 1.68 to 6.61 QALYs, compared with current care. The average additional cost of tisagenlecleucel was CaD $470 013 (US $357 031). Accounting for the total discounted cost over the patient lifetime resulted in an incremental cost of CaD $71 000 (US $53 933) to CaD $281 000 (US $213 453) per QALY gain.

    Conclusions and Relevance  To our knowledge, this study offers the first cost-effectiveness analysis of tisagenlecleucel compared with current standard care for pediatric patients with acute lymphoblastic leukemia using a constructed population-based control arm. At a willingness-to-pay threshold of $150 000/QALY, tisagenlecleucel had a 32% likelihood of being cost-effective. Tisagenlecleucel cost-effectiveness would fall below $50 000/QALY with a long-term cure rate of over 0.40 or a price discount of 49% at its currently known effectiveness.

    ×