Adaptive Optics and Spectral-Domain Optical Coherence Tomography of Human Photoreceptor Structure After Short-Duration Pascal Macular Grid and Panretinal Laser Photocoagulation

To understand the effect of therapeutic doses of laser application on the neurosensory retina, detailed histologic and optical coherence tomographic (OCT) evaluations have been used in both animal models and the human eye. We sought to evaluate photoreceptor structure associated with laser photocoagulation lesions using 2 high-resolution retinal imaging tools: adaptive optics (AO) and spectral-domain OCT (SD-OCT).

Methods. Two patients received short-duration (20-millisecond) Pascal laser therapy (532 nm; OptiMedica Corp) for clinical indications. Subject 1 was a 57-year-old woman with macular edema from hemi-central retinal vein occlusion. Treatment consisted of 3 × 3 grid laser applications with a 100-µm spot diameter and 100-µm spacing using 100 mW of power and a 20-millisecond duration to produce barely visible lesions clinically. Subject 2 was a 43-year-old woman with proliferative diabetic retinopathy treated with panretinal laser photocoagulation consisting of 4 × 4 grid arrays with a 200-µm spot diameter and 200-µm spacing using 425 mW of power and a 20-millisecond duration to produce lesions of moderate intensity (Figure 1, http://www.archophthalmol.com). For calibration of all retinal images, axial length was measured using an IOLMaster (Carl Zeiss Meditec). The Pascal system delivered evenly spaced laser applications with clinical precision, facilitating our investigation in these patients. Institutional review board approval was obtained.

SD-OCT Imaging. Volumetric SD-OCT images of the macula were obtained using SD-OCT (Biopixgen, Inc) and Cirrus high-definition OCT (Carl Zeiss Meditec). Volumes were nominally 6 × 6 mm and consisted of 128 B-scans (512 A-scans per B-scan). Cirrus software version 5.0 was used to create C-scans (en face reconstructions) from the macular volumes to aid in coregistration with other images.

AO Retinal Imaging. Images of the photoreceptor mosaic were obtained using an AO flood-illuminated camera and/or an AO scanning ophthalmoscope (AOSO). Rod and cone densities were estimated using a semiautomated direct counting procedure. Lesion size was estimated manually as the edge-to-edge distance of the disruption of the photoreceptor mosaic (AO) or the disruption of the photoreceptor layers (SD-OCT).

Results. Subject 1. The AO imaging was successful after edema regressed. The correlation between B-scan and C-scan SD-OCT images, color fundus photographs, and an AOSO montage of the photoreceptors in the area of macular grid laser treatment was determined (Figure 1A-D and Figure 2). On AOSO, circular zones of hyporeflectivity with uniform absence of photoreceptors corresponded to laser lesions observed by SD-OCT and color fundus photographs. Photoreceptor disturbances appeared to correspond to the area of laser application and not beyond it.

The mean (SD) size of 20 lesions on AOSO was 92.0 (10.9) µm, with substantial variability in their appearance (eFigure 2). In an area between 2 lesions, we observed an undisturbed photoreceptor mosaic of 82 819 rods/mm² and 8658 cones/mm². Both of these values are consistent with normal values from the same system. The areas absent of photoreceptors corresponded in size to the areas of photocoagulation, indicating that photoreceptor cell migration into the laser lesion was limited or absent.

Subject 2. The SD-OCT images of representative panretinal laser photocoagulation lesions and surrounding areas are shown in Figure 1E and F. The AO images of the photoreceptor mosaic and lesion are shown in Figure 3. Lesions consisted of circular areas of central hyperreflectivity surrounded by a ring of hyporeflectivity (Figure 3B), corresponding to the central hyperpigmented areas and surrounding concentric rings of hypopigmentation, respectively (Figure 3A). Diffusely high reflectivity was observed at the margins of some of the lesions (Figure 3D and F). The cone mosaic appeared normal immediately adjacent to the lesion (Figure 3E and F). The cone density at a nearby location was 8732 cones/mm², consistent with normal values for this eccentricity (Figure 3C). The approximate mean (SD) diameter of the panretinal laser photocoagulation lesions was 306 (43.2) µm (5 lesions evaluated),
with precise measurements limited by somewhat ill-defined lesion borders. While cones (and sometimes the smaller rods) can be visualized in Figure 3C, E, and F, the hyperreflective spots in Figure 3B are likely not photoreceptors, illustrating a challenge in interpreting AO-derived images of the cone mosaic.
Comment. Using high-resolution retinal imaging, we evaluated the tissue response in the human eye to grid and focal laser treatment applied to achieve clinically accepted end points using the Pascal laser system. We detected no evidence of reduced photoreceptor density around the laser lesions, no apparent size reduction of the lesions relative to the initial application diameters, and thus no direct evidence of photoreceptor migration or healing. Reestablishment of the photoreceptor layer in areas of retinal photocoagulation has been observed in rabbit eyes subjected to Pascal laser lesions of barely visible to moderate intensity. We suspect that observed differences in photoreceptor healing relative to experimental studies may relate to differences among species, degree of pigmentation, cellular maturity, and variability in the grading of lesion intensities.

We are unaware of previously published reports of laser photocoagulation lesions in the living human eye evaluated using AO imaging. Furthermore, the discrimination between rods and cones, with each cell type having its own characteristic size and distribution elucidated by confocal AOSO, is a unique aspect of this study that distinguishes it from other in vivo studies. The ability of AO imaging to directly assess photoreceptor structure with cellular resolution may facilitate new approaches to laser therapy, perhaps with the intent of preserving more photoreceptors.

Figure 3. Images from subject 2. Color fundus photograph (A) with corresponding adaptive optics scanning ophthalmoscopic images of a 284-µm laser lesion obtained 216 days after panretinal laser photocoagulation (white box in A) (B) and a nearby normal-appearing location (asterisk in A) (C). Adaptive optics flood-illuminated images obtained 142 days after panretinal laser photocoagulation show diffuse hyperreflectivity at the edge of a lesion (D) and a normal-appearing mosaic in areas adjacent to lesions (E and F). Scale bars indicate 100 µm.
Why Visual Function Does Not Correlate With Optic Glioma Size or Growth

It has long been known that little correlation exists between visual function and tumor size with respect to optic gliomas (World Health Organization grade I juvenile pilocytic astrocytomas).1-3 Surprisingly, however, a deterioration in visual function in those harboring such masses is still often taken as clinical evidence of tumor progression and used to justify intervention for lesions that otherwise may have failed to demonstrate any growth.4

An understanding of why deterioration of clinical function may not be a sign of tumor progression but could actually indicate glioma regression may help to better resist physician and family impulses to intervene.5

Optic gliomas are congenital in origin. Masses formed within the central nervous system in utero may influence the subsequent apoptosis of excess axons,6 in effect molding themselves in relative harmony with remaining axons to allow maximal visual function despite the presence of what may otherwise appear to be an impressive tumor. Nonetheless, following the final organization of visual pathways, subsequent growth could alter such an in utero-established arrangement. Optic gliomas are also intrinsic to the optic nerve. Thus, the hamartomatous overgrowth of glial cells with supporting tissue elements that normally surround each axon, should it occur in uniform fashion, may not necessarily impede axoplasmic flow and neuronal signaling. Neurons remain functional and viable with elevated pressures uniformly distributed.7,8 Pressure applied focally, on the other hand, particularly from tumors arising extrinsic to a nerve, can easily create pressure gradients that pinch axons and block axoplasmic flow, thus producing subsequent atrophy.9 As an analogy, just as a human can withstand high pressure evenly distributed, such as is generated by several tons of water when near the bottom of a swimming pool, it could nonetheless poorly tolerate even a fraction of such pressure were it to be applied focally, such as by an elephant resting its foot on a person's torso (Alfredo A. Sadun, MD, PhD, oral communication, February 2009).

Hence, some optic gliomas can be large congenitally or noted to continue to grow to great extents along considerable lengths of the visual axonal pathways without causing any perceptible loss of visual acuity or function.1-3 Others much smaller but with less uniform growth lesion shrinking in nonuniform fashion could also give rise to inhomogeneities and pressure gradients causing kinking of axons and loss of function.3,5,9 Just as an enlarging tumor might do. Such an apparently paradoxical worsening of vision is acknowledged during the medical treatment of prolactinomas. While external compression of the chiasm may produce an