if uncertainty remains about the efficacy of 2 treatments, the true effect on important outcomes is probably small or moderate rather than large. However, moderate differences (such as the one-fifth relative reduction in question) are common throughout medicine and may still be worthwhile and relevant to practices. First, intraocular bleeding can be a devastating event, and it is thus preferable to avoid even if it is uncommon among the general population. Second, a potentially lower risk of intraocular bleeding should not be interpreted in isolation but instead considered in the context of an overall decision to commence or switch any individual patient to take a novel oral anticoagulant together with other potential advantages (such as fewer strokes, intracranial hemorrhages, and lower mortality rates) and disadvantages (such as greater gastrointestinal bleeding). Finally, we are not aware of any reliable data to suggest that the relative effect of anticoagulation on intraocular bleeding differs according to baseline risk. Although direct evidence in high-risk populations would be preferable, it is likely that absolute risk reductions with novel anticoagulants will thus depend chiefly on an individual’s absolute risk of intraocular bleeding. For example, in one study of patients with neovascular age-related macular degeneration who were taking antiplatelet or anticoagulant drugs, the incidence of intraocular bleeding over a 6-year period was 63.5%. Among such individuals, we would argue that a one-fifth reduction is clinically worthwhile. Although we agree that greater certainty in such an estimation would be ideal, it is unlikely that further randomized clinical trials will become available to reduce confidence intervals or provide a direct confirmation in high-risk populations. Future observational studies may be useful in further complementing our understanding of the effect of antithrombotic therapies on intraocular bleeding.

Michelle T. Sun, MBBS, PhD
Christopher X. Wong, MBBS, MSc, MPH, PhD

Author Affiliations: South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia (Sun); Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia (Wong); Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, United Kingdom (Wong).

Corresponding Author: Michelle T. Sun, MBBS, PhD, South Australian Institute of Ophthalmology, Level 6, East Wing, Royal Adelaide Hospital, Adelaide, SA 5000, Australia (michelle.sun@adelaide.edu.au).

Published Online: October 5, 2017. doi:10.1001/jamaophthalmol.2017.4024

Conflict of Interest Disclosures: Both authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.


CORRECTION

Error in Figure: In the Original Investigation by Lee et al titled “Choroidal Features of Acute Macular Neuroretinopathy via Optical Coherence Tomography Angiography and Correlation With Serial Multimodal Imaging,” published online September 28, 2017, there was an error in Figure 1. There were 2 missing spectral-domain optical coherence tomography line scans from Figure 1 that should be added to panels B and D, respectively. This article was corrected online.