Because of conditions such as diabetic retinopathy and juvenile-onset open-angle glaucoma that can uniquely affect young adults, we would encourage researchers to complete future studies on eye care trends that incorporate populations who are typically uninsured, especially those who are aged 26 to 34 years and 35 to 44 years. Information regarding the prevalence of eye diseases affecting young populations seems important to direct future policy regarding insurance coverage.

Abhimanyu S. Ahuja
Vineet Pasam Reddy
Lawrence S. Halperin, MD

Author Affiliations: Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (Ahuja, Halperin); Willkes Honors College, Florida Atlantic University, Jupiter (Reddy); Retina Group of Florida, Boca Raton (Halperin).

Corresponding Author: Abhimanyu S. Ahuja, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431 (ahuja2016@health.fau.edu).

Published Online: November 21, 2019. doi:10.1001/jamaophthalmol.2019.4663

Conflict of Interest Disclosures: None reported.


In Reply We thank Ahuja et al for their letter regarding our Original Investigation, “Self-reported Eye Care Use Among US Adults Aged 50 to 80 Years.” The focus of this publication was on older adults, who make up a growing proportion of the US population and remain the age group at highest risk for vision impairment and blindness. Nonetheless, we agree that there is also a need for additional research on eye care trends among younger adults.

Understanding patterns of eye care use among younger adults, including early-life and midlife determinants of later-life outcomes, is especially important, given the increasing prevalence of diabetes among US adults of all ages and racial/ethnic backgrounds. In fact, diabetic retinopathy is the leading cause of new blindness in adults of working age in the United States1; yet blindness attributable to diabetic retinopathy can often be prevented with timely diagnosis, diagnosis, and treatment.

Initiatives such as Prevent Blindness’ Center for Vision and Population Health4 and the US Centers for Disease Control and Prevention’s Vision and Eye Health Surveillance System5 are seeking to improve the quality and dissemination of epide-

miologic and health services data in vision health. However, there are few contemporary population-level data available. Accordingly, there is a critical need for additional funding and research to provide improved surveillance of vision, vision-associated disability, and eye care across the life span.

Joshua R. Ehrlich, MD, MPH
Preeti N. Malani, MD, MSJ

Author Affiliations: Center for Eye Policy and Innovation, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor (Ehrlich); Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor (Malani); Department of Internal Medicine, University of Michigan, Ann Arbor (Malani).

Corresponding Author: Joshua R. Ehrlich, MD, MPH, Center for Eye Policy and Innovation, Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105 (joshre@med.umich.edu).

Published Online: November 21, 2019. doi:10.1001/jamaophthalmol.2019.4666

Conflict of Interest Disclosures: Dr Ehrlich is a member of the advisory board of the Center for Vision and Population Health at Prevent Blindness; he receives no compensation for this role. Dr Malani reports grants from AARP, a sponsor of the National Poll on Healthy Aging, during the conduct of the study. No other disclosures were reported.


CORRECTION

Error in Figure: In the Original Investigation titled “Sex Disparities in Ophthalmic Research: A Descriptive Bibliometric Study on Scientific Authorships,” published online August 15, 2019, Figure 2 contained an error. In the bottom panel of the Figure, the y-axis label should be removed completely. This article has been corrected online and in print.


Errors in Results, Table, and Figure: In the Special Communication article “Assessing the Use of Incorrectly Scaled Optical Coherence Tomography Angiography Images in Peer-Reviewed Studies: A Systematic Review,” there were errors in the Results section, Table 2, and Figure 2. In the Results section, the phrase “were put back into the flowchart along with the 468 that did not measure axial length” should have said “…along with the 388 that did not...” In Table 2, the citation number on Kurokawa et al should have been 36, not 2. In Figure 2, labels for “yes” and “no” were missing along arrows pointing to boxes that said “509 Included” and “480 articles excluded from further review,” respectively. Finally, in Figure 2, an arrow from a box that says “Did the authors report measuring axial length?” to a box that says “Was this mentioned as a limitation of the study?” needed to be re-routed to the box that says “388 articles” to more accurately represent the flow of articles through the study procedures. These errors have been corrected.


Errors in Group Information: In the Original Investigation “Validation of the Postnatal Growth and Retinopathy of Prematurity Screening Criteria,” published online November 14, 2019, there were errors in the Group Information. The list of Postnatal Growth and Retinopathy of Prematurity (G-ROP) Study Group members has been corrected with a replaced list of Postnatal Growth and Retinopathy of Prematurity (G-ROP) Study Group investigators. The article was corrected online.