Female Editorial Authorship Trends in High-Impact Ophthalmology Journals

Cherie A. Fathy, MD, MPH; Elliot Cherkas, BS; Charlotte N. Shields, BS; Zeba A. Syed, MD; Julia A. Haller, MD; Qiang (Ed) Zhang, PhD, MPH; James Sharpe, MS; Aakriti Garg Shukla, MD

IMPORTANCE Individuals with perceived experience and expertise are invited by editorial boards to provide commentary through editorials. Female representation among editorialists is not yet defined.

OBJECTIVE To determine female representation as editorial authors in 3 high-impact general ophthalmology journals.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study investigates the proportion of female authorship in editorials published between 2005 to 2009 and 2015 to 2019 in 3 journals: Ophthalmology, JAMA Ophthalmology, and American Journal of Ophthalmology. Data were collected from April to June 2020.

MAIN OUTCOMES AND MEASURES Proportions of female first and senior (last or solo) authors between 2005 to 2009 compared with 2015 to 2019. Secondary outcome measures include representation by sex across degree types and subspecialties. Comparisons were made for all editorialists and ophthalmologist editorialists.

RESULTS Of 814 editorial articles, there were 1179 (first and senior) authors identified. Women held 301 (25.5%) of these authorships, including 116 of 365 first authorships (32.9%) and 185 of 814 senior authorships (23.9%). Overall, female first and senior authorships grew by 68.0% between 2005 to 2009 and 2015 to 2019 (85 of 469 [18.1%] vs 216 of 710 [30.4%]; difference, 12.3%; 95% CI, 7.4-17.2; P < .001). Between 2005 to 2009 and 2015 to 2019, first and senior authorships by women increased (first: 33 of 133 [24.8%] vs 83 of 232 [35.8%]; difference, 11.0%; 95% CI, 1.4-20.6; P = .03); senior: 52 of 336 [15.5%] vs 133 of 478 [27.8%]; difference, 12.3%; 95% CI, 6.8-17.9; P < .001). JAMA Ophthalmology most substantially contributed to the increase in female first and senior authorships (13.8% and 16%), although the test for homogeneity among the 3 journals was not significant. The proportion of female ophthalmologist first authors was greater than the proportion of American Board of Ophthalmology–certified female ophthalmologists (81 of 281 [28.9%] vs 123 of 672 [18.3%]; difference, 10.6%; 95% CI, 5.3-15.9; P < .001).

CONCLUSIONS AND RELEVANCE The proportion of female senior authors increased by 68.0% between 2005 to 2009 and 2015 to 2019, but female authors represented only 25.5% of editorialists. Compared with male ophthalmologists, female ophthalmologists were more commonly first than senior authors. Additionally, female authors were more likely to be nonophthalmologists or to hold nonmedical, non-PhD degrees. While the swelling rank of female editorialists has paralleled the rising proportion of female ophthalmologists over time, parity by sex has yet to be attained. Greater awareness of disparities and strategies to mitigate them may help equalize representation.

Published online August 12, 2021.

© 2021 American Medical Association. All rights reserved.
The proportion of female physicians has gradually increased over the past 2 decades, with greater representation of women among trainees. In 2018, the Association of American Medical Colleges reported that women represented 35% of attending physicians, 46% of residents and fellows, and 53% of medical students in the US.1,2 Across surgical subspecialties, the proportion of women has also increased (from 18% from 2000 to 2005 to 24% from 2016 to 2017), but significant disparities remain.3,4 Women make up less than one-quarter of physicians in the 10 surgical subspecialties tracked by the Association of American Medical Colleges, including ophthalmology.5 According to the American Academy of Ophthalmology, the proportion of female ophthalmologists was between 14% and 17% in the early 2000s and increased to 25% in 2020. Similar to other fields, the proportion of female physicians in ophthalmology residency has been higher (39.3% in 2019) (Jessica Kuo, MBA, American Academy of Ophthalmology, email, June 29, 2020) than the proportion of female ophthalmologists (25.5% in 2019) (Jane Aguirre, BA, American Academy of Ophthalmology, email, April 28, 2020).

Female representation in the academic literature in ophthalmology and other disciplines in medicine demonstrates substantial imbalances.6-13 Academic scholarship, especially at the senior author level, is an important factor in the consideration of promotion.10,14 A bibliometric analysis of authorship of original ophthalmology research articles by sex found that from 2008 to 2018, women accounted for 34.9% of total authors, 37.1% of first authors, and 27.1% of senior authors.9 However, these disparities have lessened over time.5-10 Mimouni et al8 found a significant increase in the proportion of female authors between 2002 and 2014 in 6 ophthalmology journals. Similarly, while women made up 61.9% of pediatricians in 2015, they held 57.7% of first authorships and only 38.1% of senior authorships in 2016.15

While prior analyses have studied trends by sex in all article types, the present study focuses on editorials.5-9 Studies by Larson et al11 and Silver et al12 have demonstrated an underrepresentation of women in perspective articles in dermatology and pediatric journals. Editorials are invited commentaries that allow authors to share their medical expertise and experience as well as provide their opinions.12,13 Since these articles are solicited by editors-in-chief or editorial boards, they also indicate that the author is considered a sentinel source or subject matter expert.16 For instance, JAMA Ophthalmology’s Instructions for Authors states, “Editors encourage diversity of gender, race, ethnicity, geographic location, and discipline for Viewpoint authors, and the first author should have sufficient expertise and experience with the topic to provide an authoritative opinion.”17 Similarly, the American Journal of Ophthalmology editorial board states that while these articles should be “objective and dispassionate,” they are also likely to “provide alternative points of view and some bias.”18 Ophthalmology’s Guide for Authors states that “Editors are usually solicited by the Editor-in-Chief, although unsolicited submissions will also be considered.”16 Overall, diverse perspectives appear to be a priority.19

Key Points

Question How has the proportion of female authors producing editorials in high-impact ophthalmology journals evolved over the last 2 decades?

Findings In this cross-sectional study of 814 editorial articles, while women authored one-quarter of editorials, the proportion of female authors increased by 68.0% between 2005 to 2009 compared with 2015 to 2019 (85 of 469 editorials [18.1%] vs 216 of 710 editorials [30.4%]; difference, 12.3%). Among the studied journals, JAMA Ophthalmology most substantially contributed to increased female first and senior authorships (13.8% and 16%), although this was statistically insignificant.

Meaning The proportion of female representation in ophthalmology editorial authorship is increasing, but parity has yet to be achieved.

The present study aims to investigate trends in female authorship of editorials in high-impact general ophthalmology journals in the last 2 decades and to compare these patterns with the rising numbers of female ophthalmologists. We also sought to evaluate female authorship trends by subspecialty and degree type from 2005 to 2009 compared with 2015 to 2019.

Methods

We conducted a cross-sectional study of editorial authorship in 3 high-impact general ophthalmology journals published during two 5-year periods (January 1, 2005, to December 31, 2009, and January 1, 2015, to December 31, 2019). The journals, associated article categories, and 2020 impact factors were: Ophthalmology (Editorial; 2020 impact factor, 8.200), JAMA Ophthalmology and Archives of Ophthalmology (Invited Commentary and Editorial; 2020 impact factor, 6.167), and the American Journal of Ophthalmology (Editorial; 2020 impact factor, 4.799). Articles written by the editorial staff were excluded. A priori, we planned to analyze the 3 journals together as well as individually. Three authors (C.A.F., E.C., and C.N.S.) used the journal websites to perform the data collection. The Institutional Review Board of the Wills Eye Hospital determined that this study was exempt from review, as the information included was publicly available.

Analysis by Authorship Position

This analysis included first and last authors, as first authors generally contribute substantially to the creation and writing of the article, while the last author leads the research team.6,20 Solo authorships were categorized as senior authorships.

Analysis of Ophthalmologist vs Nonophthalmologist Authors

We performed a 2-pronged analysis by stratifying editorialists into 2 groups and comparing the proportions of authorships by sex between 2005 to 2009 and 2015 to 2019: (1) all editorialists and (2) ophthalmologist editorialists. Authors were...
Female Editorial Authorship Trends in High-Impact Ophthalmology Journals

Original Investigation Research

we determined to be ophthalmologists if they (1) were listed on the American Board of Ophthalmology (ABO) website or (2) had professional profiles confirming ophthalmology residency training or including terminology describing them as ophthalmologists. Status as an ophthalmologist was used when comparing proportions of female physician authors with proportions of ABO-certified ophthalmologists, for which data were obtained from the ABO (Meghan McGowan, BA, American Board of Ophthalmology, email, April 12, 2020).

Sex Determination
Sex was determined by authors’ names, followed by an internet search for information, including photographs and/ or terminologies used in biographies. A Google-based database, Baby Name Guesser, was also used to determine the sex of 2 authors without identifiable public profiles. We assigned sex if the program provided a likelihood ratio of more than 3 to 1, similar to prior studies on dermatology and ophthalmology authorship trends.

Degree-Type Analysis
We also compared the degrees by sex, with a comparison between 3 groups: (1) medical degrees, such as MD or DO (or international equivalents, such as MBBS), and doctor of philosophy degrees, such as PhD; (2) dual degrees (eg, MD/MPH); or (3) nonmedical or non-PhD degrees (eg, BS, MPH, and MSc).

Subspecialty Analysis
We measured representation by sex among subspecialties, which were divided into 6 categories: general (comprehensive, ethics, and medical education), anterior segment (cornea, cataract, and glaucoma), retina and ocular oncology, pediatrics, and neuro-ophthalmology, pathology, and ocULOplastics.

Outcomes
The main outcome measures were proportions of women among first and senior (last or solo) authors between 2005 to 2009 and 2015 to 2019. Secondary outcome measures included proportions of female ophthalmologists among first and senior authors (last or solo) between 2005 to 2009 and 2015 to 2019. We also assessed for an association between degree type and authorship position as well as proportions of subspecialty authorship by sex.

Table 1. Distribution of Journal Issues and of Editorials Examined

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal issues</td>
<td>120 (33.3%)</td>
<td>120 (33.3%)</td>
<td>120 (33.3%)</td>
<td>360</td>
</tr>
<tr>
<td>Articles</td>
<td>168 (20.6%)</td>
<td>395 (48.5%)</td>
<td>251 (30.8%)</td>
<td>814</td>
</tr>
<tr>
<td>Authors</td>
<td>253 (21.5%)</td>
<td>540 (45.8%)</td>
<td>386 (32.7%)</td>
<td>1179</td>
</tr>
<tr>
<td>Author sex assigned</td>
<td>253 (21.5%)</td>
<td>540 (45.8%)</td>
<td>386 (32.7%)</td>
<td>1179</td>
</tr>
<tr>
<td>Author sex unassigned</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Female authors</td>
<td>48 (15.9%)</td>
<td>177 (58.8%)</td>
<td>76 (25.3%)</td>
<td>301</td>
</tr>
</tbody>
</table>

Statistical Analysis
We performed statistical analyses using SPSS software version 26.0 (IBM Analytics) and R software version 4.0.4 (The R Foundation). Statistical analyses of proportions of female authors consisted of χ² tests. The Mantel-Haenszel test with a test of homogeneity were used to compare differences among 3 journals. Odds ratios (ORs) for authorship position by sex and degree were determined with their corresponding 95% CIs. To compare slopes of regression lines, an analysis of covariance was performed. P values were 2-sided and without adjustments for multiple exploratory analyses, and P values less than .05 were considered significant.

Results

Overall Analysis
A total of 814 editorials published in 3 journals (Ophthalmology, JAMA Ophthalmology, and American Journal of Ophthalmology) from 2005 to 2009 and 2015 to 2019 were identified and analyzed (Table 1). There was a substantial increase in the number of editorials published in 2015 to 2019 vs 2005 to 2009 (478 vs 336; increase of 42.3%). The number of articles produced by male and female first and senior (last or solo) authors are displayed in Figure 1. Women held 301 of 1179 total first or senior authorships (25.5%). A total of 97 female authorships and 365 male authorships were held by solo authors; these solo authorships were categorized as senior authorships. The median (range) number of editorials per author was 1 (1-9) for both sexes. Overall, female authorships grew by 68.0% between 2005 to 2009 and 2015 to 2019 (85 of 469 [18.1%] vs 216 of 710 [30.4%]; difference, 12.3%; 95% CI, 7.4-17.9; P < .001).

Within the first and senior (last or solo) authorship categories, women held 116 of 365 first authorships (31.8%) and 185 of 814 senior authorships (22.7%). Female first authorships between 2005 to 2009 and 2015 to 2019 increased by 44.4% (33 of 133 [24.8%] vs 83 of 232 [35.8%]; difference, 11.0%; 95% CI, 1.4-320.6; P = .03), and female senior authorships increased by 79.4% (52 of 336 [15.5%] vs 133 of 478 [27.8%]; difference, 12.3%; 95% CI, 6.8-317.2; P < .001). Additionally, women were more likely to be first authors than men in 2005 to 2009 (OR, 2.45; 95% CI, 1.31-4.46; P = .002), but not significantly so in 2015 to 2019 (OR, 1.35; 95% CI, 0.89-3.05; P = .15). Female representation varied throughout the indi-
individual years of our study, ranging from as low as 15.1% (3 of 20) of first authors in 2005 and 13.7% (10 of 73) of senior authors in 2008 to as high as 42.9% (24 of 56) of first authors in 2019 and 35.5% (44 of 124) of senior authors in 2018.

Ophthalmologists made up 67.7% (204 of 301) of female authors and 85.3% (749 of 878) of male authors. Of all first and senior authorships, 19.2% (226 of 1179) were held by individuals who were not ophthalmologists. A greater proportion of female authors were not ophthalmologists compared with male authors (97 of 301 [32.3%] vs 129 of 878 [14.6%]; difference, 17.7%; 95% CI, 12.0-23.5; \(P < .001 \)).

Table 2 and Table 3 show the proportions of female ophthalmologist authors vs ABO-certified female ophthalmologists for first and senior authorship categories. The proportion of female ophthalmologist first authors was greater than the proportion of ABO-certified female ophthalmologists (81 of 281 [28.9%] vs 42 401 of 232 041 [18.3%]; difference, 10.6%; 95% CI, 5.3-15.9; \(P < .001 \)), suggesting that female ophthalmologists are publishing with greater frequency than expected as first authors. However, a difference in the proportion of female ophthalmologist senior authors and the proportion of ABO-certified female ophthalmologists was not identified (123 of 672 [18.3%] vs 42 401 of 232 041 [18.3%]; difference, 0%; 95% CI, -2.9 to 3.0; \(P = .98 \)). Table 2 and Table 3 demonstrate that the increase in first (13.8%) and senior (16%) authorships was most substantial from JAMA Ophthalmology in each time period, although the test for homogeneity among the 3 journals was not significant.

Using analysis of covariance analysis, we did not detect a difference in the rate of growth of the proportion of female first authors and ABO-certified female physicians both when considering all author types (\(R^2 = 0.69; P = .23 \)) and only ophthalmologist authors (\(R^2 = 0.54; P = .48 \)) (Figure 2). Similarly, we did not detect a difference in the rate of growth of the proportion of female senior authors and ABO-certified female authors when considering all author types (\(R^2 = 0.58; P = .18 \)) and when considering only ophthalmologist authors (\(R^2 = 0.65; P = .10 \)) (Figure 2).

Degree-Type Analysis

Proportions of female authors with medical degrees (MD, DO, or international equivalent medical degrees) or PhD degrees aligned with findings regarding female ophthalmologist authors. Nonmedical or non-PhD degrees (eg, BS, MPH) were more common among female authors than male authors (18 of 301 [6.0%] vs 19 of 878 [2.2%]; difference, 3.8%; 95% CI, 1.0-6.6; \(P < .001 \)). Female authors were almost 3-fold more likely to hold nonmedical degrees or non-PhD degrees than male authors in equivalent authorship positions (OR, 2.86; 95% CI, 1.48-5.82; \(P = .002 \)). In contrast, female and male authors were equally likely to have a medical or PhD degree (OR, 0.77; 95%
The proportion of women with medical, PhD, or dual degrees increased between the 2 time periods (82 of 462 [17.7%] vs 202 of 680 [29.7%]; *P* < .001). Proportions of female authors by degree status are shown in Table 1 in the Supplement.

Subspecialty Analysis

Proportions of female authors by author subspecialty are shown in eTables 2 to 4 in the Supplement. Comparison of 2005 to 2009 vs 2015 to 2019 suggested that total female authorship increased only in the anterior segment category (15 of 127 [11.8%] vs 33 of 106 [31.1%]; difference, −19.3%; 95% CI, −29.8 to −9.8; *P* < .001). Representation of female authors increased among first authors in the anterior segment category (7 of 45 [15.5%] vs 18 of 37 [48.6%]; difference, 33.1%; 95% CI, 13.8-53.2; *P* < .001) and among senior authors in both the general category (20 of 120 [16.7%] vs 46 of 168 [27.4%]; difference, 10.7%; 95% CI, 1.2-32.0; *P* = .03) and anterior segment category (8 of 82 [9.8%] vs 15 of 69 [21.7%]; difference, 12.0%; 95% CI, 0.3-323.6; *P* = .04).

Discussion

This cross-sectional study of editorials published in 3 high-impact general ophthalmology journals between 2005 to 2009 and 2015 to 2019 found a substantial increase in the number of editorials published and an increase in the proportion of female first and senior (last or solo) authors over the 2 time periods. The upward trend in female ophthalmologist first and senior authorship tracked with the rising proportion of female ophthalmologists over time. Additionally, female authors were more commonly nonophthalmologists compared with male authors, and a greater proportion were first authors. While prior reports considered all article types, the present study contributes to the existing literature by highlighting the publication gap by sex in editorials in ophthalmology.
and the tendency for women to hold fewer supervisory roles in research, such as senior authorship.6-10,12,13

Parity between the sexes is an increasingly recognized issue for the field of ophthalmology and for medicine and society as a whole.14,20,24 Although most ophthalmologists are male as defined by ABO certification (23.1% were female in 2019) and American Academy of Ophthalmology membership (25.5% were female in 2019), these proportions are bound to evolve over time, as half of current ophthalmology residents are female (Jane Aguirre, BA, American Academy of Ophthalmology, email, April 28, 2020). In the setting of editorial article authorship, parity by sex would allow for equitable representation of diverse opinions and help mitigate potential unconscious biases.

Our study’s findings are consistent with prior reports, with a few notable differences in methodology and outcome measures.6-10,12,13 Franco-Cardenas et al6 analyzed a sampling of 100 articles in 2000 and 2010 in 3 major ophthalmology journals, while we assessed consecutive editorials across two 5-year time periods. Their results similarly demonstrated increased representation of female authors when considering all author types. Similar to Kramer et al,9 total female senior authorship in our study was lower than female first authorship, suggesting that there may be a sex disparity in achieving senior authorship status. Additionally, similar to Mimouni et al,9 our study detected a temporal increase in the proportion of female first authors compared with senior authors and also found that women made up less than 50% of authors in all categories.

Our study also included a complementary analysis that considered only ophthalmologist authors. Given that a substantial proportion of female authors (32.3%) were not ophthalmologists in our study, including all authors in the analysis may have underestimated the differences in authorship rates between male and female ophthalmologists. Our analysis demonstrated this, as findings differed when considering only ophthalmologists vs all author types. Our comparison of the proportion of female ophthalmologist authors with the proportion of female ABO-certified ophthalmologists may have been a more specific way to assess for trends in representation and led us to find that the proportion of female ophthalmologist first authors was greater than the proportion of female ABO-certified ophthalmologists. This association was not seen for female ophthalmologist senior authors, suggesting that women are not as well represented in senior authorships as they are in first authorships.

The increase in editorials over the 2 time periods may have created additional opportunities for a wider range of editorialists. Our study revealed an increase in articles produced by both female first authors (44.4% [24.8% vs 35.8%]; P = .03) and senior authors (79.4% [15.5% vs 27.8%]; P < .001) between 2005 to 2009 vs 2015 to 2019. This pattern may be attributable to the transition of first authors to senior authors. Assuming that a first author was a first-year resident or a medical student, one could postulate that they may transition into a senior authorship role as early as 5 years later on becoming a faculty member. Our study spanned 15 years; as such, the rise in senior authorship would be even more robust if a substantial proportion of first authors eventually became senior authors. This may suggest a leaky pipeline between first to senior authorship, in which some female nonphysicians or young female ophthalmologists are not continuing in ophthalmology or in scholarly work.

Interestingly, while editorial authorship rates for women have increased, they have not matched the proportion of women contributing to ophthalmic publications overall. While prior studies have found that women currently author 30.6% to 36.8% of articles over the last decade, our report demonstrated that they still only represent 25.5% of editorialists.6,8

Invited commentary represents a potentially prestigious opportunity for authors to share their opinions and develop their roles as thought leaders within the field. While the lack of sex parity in editorial publications may be attributable to the disproportionate representation of women in ophthalmology, limited diversity of editorial boards may also contribute to this issue by potentially perpetuating unconscious biases that may result in editors inadvertently overlooking female authors.10,12,25 It is also important to note that the 3 journals studied had variable selection criteria listed for editorials, which may potentially contribute to variability in publication rates by sex.16-18 Furthermore, women may also be declining authorship invitations owing to greater role overload or a higher burden of nonresearch tasks, such as administrative roles or family obligations.19 Another study suggested that women may...
Female Editorial Authorship Trends in High-Impact Ophthalmology Journals

Original Investigation Research

RESEARCH ARTICLE

Female Editorial Authorship Trends in High-Impact Ophthalmology Journals

Perceptions that women perceive themselves as having lower levels of expertise and may decline invitations as a result.13 It is important to note that the disparity in publication rates is likely not secondary to diminished research productivity by women. Women have been found to have higher publication rates for abstracts presented at academic surgery conferences than men (69.5% vs 52.4%; P = .01) and publish in higher-impact journals (impact factors of 4.74 vs 3.48; P = .01).26 Additionally, while publication rates may initially be lower for women (mean of 1.94 fewer publications per year compared with men; P < .01), senior female authors publish more articles annually than their male counterparts (mean of 1.57 more publications per year than men; P = .03), suggesting that women may have a different career trajectory than men, with productivity peaking later.27

Limitations
Our study has several limitations. We relied on ABO data to determine trends in growth of ophthalmologists over time, as ABO-certified physicians served as our comparator population. These data exclude trainees who are physicians in training or are physicians but not yet certified by the ABO (eg, medical students, residents, and fellows) and exclude non-US physicians. Therefore, we assessed both female editorialists who were ophthalmologists as well as all female editorialists. However, a strength of this study is our rigorous search to determine whether authors were ophthalmologists; we used ABO certification status and reviewed the online professional profiles of non-ABO-certified individuals to determine if they had completed ophthalmology training. Importantly, non-ophthalmology female researchers who are subject matter experts may be invited in some cases and be more appropriate than ophthalmologist authors; this scenario was not accounted for in this study. Other limitations include not controlling for publication record, years in active practice, and academic rank.13 Furthermore, small sample sizes for specialties may have underpowered the analyses. Since only 5 years from each decade were included, trends in the gap between time periods may have been missed. We relied on the tradition of assigning senior author status to the last author, but this practice may not be consistently followed.6 Additionally, we relied on the Baby Name Guesser application to determine sex for 2 individuals; this may be susceptible to bias.

Conclusions
This cross-sectional study highlights that disparity between the sexes in editorial authorship, particularly in the senior ranks, has yet to be attained, although the representation of women is improving. These findings provide further insight into patterns of authorship in editorials, important assets to and markers for career advancement. Parlaying analysis of such disparities into strategies for mitigating them holds promise for further strides toward equity.

ARTICLE INFORMATION

Accepted for Publication: June 23, 2021.
Published Online: August 12, 2021.

Author Contributions: Drs Fathy and Garg Shukla had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Fathy, Cherkas, Syed, Garg Shukla.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Fathy, Cherkas, Shields, Syed, Garg Shukla.

Critical revision of the manuscript for important intellectual content: Fathy, Cherkas, Syed, Haller, Zhang, Sharpe, Garg Shukla.

Statistical analysis: Fathy, Cherkas, Shields, Zhang, Sharpe, Garg Shukla.

Administrative, technical, or material support: Fathy, Cherkas, Syed, Garg Shukla.

Study supervision: Fathy, Haller, Garg Shukla.

Conflict of Interest Disclosures: None reported.

Funding/Support: Support was provided in part by the American Glaucoma Society Mentoring for the Advancement of Physician Scientists grant.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data: preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

REFERENCES

Status of Women in Ophthalmology in 2021—Different Year, Same Story?

Kathryn Colby, MD, PhD

In this issue, Fathy and colleagues report on the status of women as authors of editorials in 3 general ophthalmology journals with relatively high impact factors. Their findings, that the proportion of female editorialists is now approximately 30%, up from less than 20% from 2005-2009, appears to be encouraging news, at first glance. However, further analysis revealed that almost a third of the female editorialists were not ophthalmologists, while approximately 15% of the male editorialists were not ophthalmologists, and that women were more likely to be first, rather than senior, authors. Of note, this latter finding can be difficult to interpret across journals since the instructions for authors for some journals, for example, JAMA Ophthalmology, recently clarified that the first author of opinion pieces such as editorials typically should be an author with experience and expertise in the opinion being discussed, while other journals may include opinion pieces in which the last author is the author who was invited to write the opinion piece, with 1 or more other authors who are junior to that last author. Nevertheless, Fathy et al conclude that we have yet to attain parity between the sexes in this metric and call for development of strategies to improve this situation.

I last wrote about this important topic in early 2020. Of course, 2020 did not turn out the way any of us expected, with unprecedented disruptions to virtually every aspect of our lives, both professional and personal. I doubt many of us were as worried about the status of women as we were trying to care for our patients and our loved ones in the throes of the COVID-19 pandemic. Now that COVID-19 is under better control, vaccines are available, and we are cautiously approaching a more normal existence, it seems an appropriate time to revisit how women are faring in ophthalmology. Have we made strides since early 2020? Despite a few hopeful signs, the answer appears to be “not really,” but I will let you draw your own conclusions.

First, there are a few publications suggesting that some progress is being made. Sridhar et al showed that the number of women serving as faculty at high-profile retina meetings increased from 19.6% in 2015 to 25.5% in 2020. Not surprisingly, having a woman on the program committee appeared to increase the number of women on the stage. Kalavar and colleagues reported an increase in women presenting at the American Association of Pediatric Ophthalmology and Strabismus (AAPOS) annual meetings from 2011 to 2019, along with an increase in women authors in the AAPOS journal. Patel et al demonstrated an increase in the overall number of female speakers at 9 major ophthalmology meetings from 2015 to 2017. While these findings may seem like a step in the right direction, each of these papers showed continued inequities, especially in prestigious positions like invited or named lectures. Just last week, I received an email from one of the organizations I belong to, describing a series of 9 invited lectures at their upcoming annual meeting, all to be given by men. When I brought this to the attention of the society leadership, they were apologetic. One of the program organizers, a close friend whom I consider a “woke” individual, told me he hadn’t even considered the lack of sex parity among the speakers, a tangible and distressing example of the unconscious bias that remains in ophthalmology. To this leader’s credit, he volunteered to give up his spot so that at least one woman could be included as an invited speaker. While this gesture is appreciated, how much better would it be if sex parity was considered along with speaker merit when the program was being planned, instead of being brought up by an outspoken member of the “parity police” after the program was already published?

There are also bright spots in society leadership, a previously reported area where women lag. This year, the American...