be less representative of a wider population with open-angle glaucoma. Nonetheless, the effect on visual field improvement in a short-term study would be more difficult to demonstrate with a conventional, office-based visual field testing paradigm.2

Regarding randomization in a 2:1 ratio, we agree it has a number of limitations, particularly in large, phase 3 studies that aim to provide evidence for clinical use of a new intervention. However, in earlier phase 1/2 trials, unbalanced allocation has been widely used and justified.3,4 In particular, when more information on safety needs to be collected for a new drug (or dosage or administration route), randomizing more participants to the active agent has advantages and may even be recommended. This was the primary reason in our study1 as, despite the use of a commercially available nutritional supplement, we sought to know more about its tolerability and adverse reactions in a high dose, in combination, and in an older population.

The possibility that discontinuation of nutritional supplements at least a week prior to study entry may have been insufficient is a plausible one. When dealing with this issue, it was remarkable to see the variety of nutritional supplements in the market and how often patients with glaucoma use them (often in combination) for numerous reasons. More importantly, little is known about their half-life in the central nervous system and recommended washout period. Although 1 week may have been insufficient for some of them, randomization may have helped mitigate any systematic differences between groups in the results.

On the question regarding the chronicity of glaucoma, we agree the short-term changes we observed should not be translated to long-term rates of visual field progression and that longer studies are warranted. This issue has been argued in the Discussion section (see Limitations) and the Abstract.1

Regarding the study participant who experienced mild gastrointestinal symptoms, the patient was still in the first days of treatment (low dose) and had coexisting flulike symptoms (unrelated to treatment), hence the decision to remove the patient from the study. We appreciate the authors’ interest in our article.

Carlos Gustavo De Moraes, MD, MPH, PhD
Jeffrey M. Liebmann, MD

Author Affiliations: Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York.

Corresponding Author: Carlos Gustavo De Moraes, MD, MPH, PhD, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, 635 W 165th St, Box 69, New York, NY 10032 (cvd2109@cumc.columbia.edu).

Published Online: March 10, 2022. doi:10.1001/jamaophthalmol.2022.0152

Conflict of Interest Disclosures: Dr Liebmann reported personal fees from Allergan, Inc, Genentech, Inc, and Thea, Inc outside the submitted work. No other disclosures were reported.

CORRECTION

Error in Byline: The Original Investigation, “Plasma Levels of Bevacizumab and Vascular Endothelial Growth Factor After Low-Dose Bevacizumab Treatment for Retinopathy of Prematurity in Infants,”1 that was published online March 3, 2022, included a formatting error for the lists of authors and nonauthor collaborators. This article was corrected online.