Aqueous Humor Dynamics in Pigment Dispersion Syndrome | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Campbell  DG Pigmentary dispersion and glaucoma: a new theory.  Arch Ophthalmol 1979;97 (9) 1667- 1672PubMedGoogle ScholarCrossref
Sugar  HSBarbour  FA Pigmentary glaucoma: a rare clinical entity.  Am J Ophthalmol 1949;32 (1) 90- 92PubMedGoogle Scholar
Ritch  RSteinberger  DLiebmann  JM Prevalence of pigment dispersion syndrome in a population undergoing glaucoma screening.  Am J Ophthalmol 1993;115 (6) 707- 710PubMedGoogle Scholar
Ritch  R Pigment dispersion syndrome.  Am J Ophthalmol 1998;126 (3) 442- 445PubMedGoogle ScholarCrossref
Siddiqui  YTen Hulzen  RDCameron  JDHodge  DOJohnson  DH What is the risk of developing pigmentary glaucoma from pigment dispersion syndrome?  Am J Ophthalmol 2003;135 (6) 794- 799PubMedGoogle ScholarCrossref
Campbell  DGSchertzer  RM Pathophysiology of pigment dispersion syndrome and pigmentary glaucoma.  Curr Opin Ophthalmol 1995;6 (2) 96- 101PubMedGoogle ScholarCrossref
Mastropasqua  LCarpineto  PCiancaglini  MLobefalo  LCostagliola  CGallenga  PE Effect of dapiprazole, an alpha-adrenergic blocking agent, on aqueous humor dynamics in pigmentary glaucoma.  Ophthalmic Res 1996;28 (5) 312- 318PubMedGoogle ScholarCrossref
Ritch  R A unification hypothesis of pigment dispersion syndrome.  Trans Am Ophthalmol Soc 1996;94381- 409PubMedGoogle Scholar
Brown  JDBrubaker  RF A study of the relation between intraocular pressure and aqueous humor flow in the pigment dispersion syndrome.  Ophthalmology 1989;96 (10) 1468- 1470PubMedGoogle ScholarCrossref
Brubaker  RF Flow of aqueous humor in humans [the Friedenwald Lecture].  Invest Ophthalmol Vis Sci 1991;32 (13) 3145- 3166PubMedGoogle Scholar
Grant  WM Clinical measurements of aqueous outflow.  AMA Arch Ophthalmol 1951;46 (2) 113- 131PubMedGoogle ScholarCrossref
Toris  CBKoepsell  SAYablonski  MECamras  CB Aqueous humor dynamics in ocular hypertensive patients.  J Glaucoma 2002;11 (3) 253- 258PubMedGoogle ScholarCrossref
Becker  BPettit  THGay  AJ Topical epinephrine therapy of open-angle glaucoma.  Arch Ophthalmol 1961;66219- 225PubMedGoogle ScholarCrossref
Larsson  LIRettig  ESBrubaker  RF Aqueous flow in open-angle glaucoma.  Arch Ophthalmol 1995;113 (3) 283- 286PubMedGoogle ScholarCrossref
Beneyto Martin  PFernández Vila  PCPérez Martinez  TMAliseda Peréz  D A fluorophotometric study on the aqueous humor dynamics in primary open angle glaucoma.  Int Ophthalmol 1992;16 (4-5) 311- 314PubMedGoogle ScholarCrossref
Epstein  DLFreddo  TFAnderson  PJPatterson  MMBassett-Chu  S Experimental obstruction to aqueous outflow by pigment particles in living monkeys.  Invest Ophthalmol Vis Sci 1986;27 (3) 387- 395PubMedGoogle Scholar
Grant  WM Experimental aqueous perfusion in enucleated human eyes.  Arch Ophthalmol 1963;69783- 801PubMedGoogle ScholarCrossref
Lehto  IVesti  E Diagnosis and management of pigmentary glaucoma.  Curr Opin Ophthalmol 1998;9 (2) 61- 64PubMedGoogle ScholarCrossref
Mardin  CYKüchle  MNguyen  NXMartus  PNaumann  GO Quantification of aqueous melanin granules, intraocular pressure and glaucomatous damage in primary pigment dispersion syndrome.  Ophthalmology 2000;107 (3) 435- 440PubMedGoogle ScholarCrossref
Richardson  TMHutchinson  BTGrant  WM The outflow tract in pigmentary glaucoma: a light and electron microscopic study.  Arch Ophthalmol 1977;95 (6) 1015- 1025PubMedGoogle ScholarCrossref
Gottanka  JJohnson  DHGrehn  FLütjen-Drecoll  E Histologic findings in pigment dispersion syndrome and pigmentary glaucoma.  J Glaucoma 2006;15 (2) 142- 151PubMedGoogle ScholarCrossref
Tektas  OYLütjen-Drecoll  E Structural changes of the trabecular meshwork in different kinds of glaucoma.  Exp Eye Res 2009;88 (4) 769- 775PubMedGoogle ScholarCrossref
Hoskins  HD  JrKass  MA Clinical interpretation of gonioscopic findings. Hoskins  HD  JrKass  MA Becker-Shaffer's Diagnosis and Therapy of the Glaucomas 6th ed. St Louis, MO Mosby–Year Book1989;106- 116Google Scholar
Carlson  KHBourne  WM McLaren  JWBrubaker  RF Variations in human corneal endothelial cell morphology and permeability to fluorescein with age.  Exp Eye Res 1988;47 (1) 27- 41PubMedGoogle ScholarCrossref
Toris  CBYablonski  MEWang  YLCamras  CB Aqueous humor dynamics in the aging human eye.  Am J Ophthalmol 1999;127 (4) 407- 412PubMedGoogle ScholarCrossref
Schenker  HIYablonski  MEPodos  SMLinder  L Fluorophotometric study of epinephrine and timolol in human subjects.  Arch Ophthalmol 1981;99 (7) 1212- 1216PubMedGoogle ScholarCrossref
Yablonski  MEZimmerman  TJWaltman  SRBecker  B A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics.  Exp Eye Res 1978;27 (2) 135- 142PubMedGoogle ScholarCrossref
Zeimer  RCGieser  DKWilensky  JTNoth  JMMori  MMOdunukwe  EE A practical venomanometer: measurement of episcleral venous pressure and assessment of the normal range.  Arch Ophthalmol 1983;101 (9) 1447- 1449PubMedGoogle ScholarCrossref
Yablonski  MEMindel  JS Methods for assessing the effects of pharmacologic agents on aqueous humor dynamics. Tasman  WJaeger  EA Biomedical Foundations of Ophthalmology Rev. ed. Philadelphia, PA Lippincott Williams & Wilkins2004;1- 9Google Scholar
Hayashi  MYablonski  MENovack  GD Trabecular outflow facility determined by fluorophotometry in human subjects.  Exp Eye Res 1989;48 (5) 621- 625PubMedGoogle ScholarCrossref
Becker  B Tonography in the diagnosis of simple (open angle) glaucoma.  Trans Am Acad Ophthalmol Otolaryngol 1961;65156- 162PubMedGoogle Scholar
Yablonski  MECook  DJGray  J A fluorophotometric study of the effect of argon laser trabeculoplasty on aqueous humor dynamics.  Am J Ophthalmol 1985;99 (5) 579- 582PubMedGoogle Scholar
Ziai  NDolan  JWKacere  RDBrubaker  RF The effects on aqueous dynamics of PhXA41, a new prostaglandin F analogue, after topical application in normal and ocular hypertensive human eyes.  Arch Ophthalmol 1993;111 (10) 1351- 1358PubMedGoogle ScholarCrossref
Gharagozloo  NZBaker  RHBrubaker  RF Aqueous dynamics in exfoliation syndrome.  Am J Ophthalmol 1992;114 (4) 473- 478PubMedGoogle Scholar
Johnson  TVFan  SCamras  CBToris  CB Aqueous humor dynamics in exfoliation syndrome.  Arch Ophthalmol 2008;126 (7) 914- 920PubMedGoogle ScholarCrossref
Johnson  DHBrubaker  RF Dynamics of aqueous humor in the syndrome of exfoliation with glaucoma.  Am J Ophthalmol 1982;93 (5) 629- 634PubMedGoogle Scholar
Davidson  JABrubaker  RFIlstrup  DM Dimensions of the anterior chamber in pigment dispersion syndrome.  Arch Ophthalmol 1983;101 (1) 81- 83PubMedGoogle ScholarCrossref
Strasser  GHauff  W Pigmentary dispersion syndrome: a biometric study.  Acta Ophthalmol (Copenh) 1985;63 (6) 721- 722PubMedGoogle ScholarCrossref
Pavlin  CJHarasiewicz  KFoster  FS Posterior iris bowing in pigmentary dispersion syndrome caused by accommodation.  Am J Ophthalmol 1994;118 (1) 114- 116PubMedGoogle Scholar
Sokol  JStegman  ZLiebmann  JMRitch  R Location of the iris insertion in pigment dispersion syndrome.  Ophthalmology 1996;103 (2) 289- 293PubMedGoogle ScholarCrossref
Toris  CBPederson  JE Aqueous humor dynamics in experimental iridocyclitis.  Invest Ophthalmol Vis Sci 1987;28 (3) 477- 481PubMedGoogle Scholar
Clinical Sciences
Sepetmber 2010

Aqueous Humor Dynamics in Pigment Dispersion Syndrome

Author Affiliations

Author Affiliations: Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha.

Arch Ophthalmol. 2010;128(9):1115-1118. doi:10.1001/archophthalmol.2010.203

Objective  To assess aqueous humor dynamics in pigment dispersion syndrome (PDS).

Methods  Four groups of age-matched participants included 2 experimental groups with PDS (PDS with ocular hypertension [PDS-OHT], 17 eyes; PDS without ocular hypertension [PDS-ONT], 18 eyes) and 2 control groups without PDS (OHT, 18 eyes; ONT, 18 eyes). Assessments included intraocular pressure measured by pneumatonometry, episcleral venous pressure by venomanometry, aqueous flow and outflow facility by fluorophotometry, corneal thickness and anterior chamber depth by pachymetry, and uveoscleral outflow by mathematical calculation. Comparisons were made by analysis of variance and 2-tailed unpaired t tests.

Results  The PDS-OHT group had higher intraocular pressures than the ONT and PDS-ONT groups (P < .001) and higher episcleral venous pressure (P = .04) and lower outflow facility (P = .01) than the ONT group. Anterior chamber volume was larger in the PDS-OHT group than in the other groups (P < .05 for all). No other comparisons between the PDS-OHT group and the other groups yielded statistically significant differences at a significance level of less than .05.

Conclusions  The elevated intraocular pressure in PDS is caused by reduced outflow facility. This differs from OHT without PDS, in which reductions in uveoscleral outflow and outflow facility have been reported.