Real-Time Ophthalmoscopic Findings of Superselective Intraophthalmic Artery Chemotherapy in a Nonhuman Primate Model | Clinical Pharmacy and Pharmacology | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Shields CL, Shields JA. Diagnosis and management of retinoblastoma.  Cancer Control. 2004;11(5):317-32715377991PubMedGoogle Scholar
Chintagumpala M, Chevez-Barrios P, Paysse EA, Plon SE, Hurwitz R. Retinoblastoma: review of current management.  Oncologist. 2007;12(10):1237-124617962617PubMedGoogle ScholarCrossref
Rodriguez-Galindo C, Chantada GL, Haik BG, Wilson MW. Treatment of retinoblastoma: current status and future perspectives.  Curr Treat Options Neurol. 2007;9(4):294-30717580009PubMedGoogle ScholarCrossref
Abramson DH, Dunkel IJ, Brodie SE, Kim JW, Gobin YP. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results.  Ophthalmology. 2008;115(8):1398-1404Google ScholarCrossref
Abramson DH, Dunkel IJ, Brodie SE, Marr B, Gobin YP. Superselective ophthalmic artery chemotherapy as primary treatment for retinoblastoma (chemosurgery).  Ophthalmology. 2010;117(8):1623-162920381868PubMedGoogle ScholarCrossref
Abramson DH, Dunkel IJ, Brodie SE, Marr B, Gobin YP. Bilateral superselective ophthalmic artery chemotherapy for bilateral retinoblastoma: tandem therapy.  Arch Ophthalmol. 2010;128(3):370-37220212212PubMedGoogle ScholarCrossref
Gobin YP, Dunkel IJ, Marr BP,  et al.  Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience [published online ahead of print February 14, 2011].  Arch Ophthalmol. 2011;129(6):732-73721320950PubMedGoogle ScholarCrossref
Marr BP, Gobin PY, Dunkel IJ, Brodie SE, Abramson DH. Spontaneously resolving periocular erythema and ciliary madarosis following intra-arterial chemotherapy for retinoblastoma.  Middle East Afr J Ophthalmol. 2010;17(3):207-20920844675PubMedGoogle ScholarCrossref
Shields CL, Ramasubramanian A, Rosenwasser R, Shields JA. Superselective catheterization of the ophthalmic artery for intraarterial chemotherapy for retinoblastoma.  Retina. 2009;29(8):1207-120919734768PubMedGoogle Scholar
Shields CL, Shields JA. Intra-arterial chemotherapy for retinoblastoma: the beginning of a long journey.  Clin Experiment Ophthalmol. 2010;38(6):638-64320584015PubMedGoogle ScholarCrossref
Shields CL, Shields JA. Retinoblastoma management: advances in enucleation, intravenous chemoreduction, and intra-arterial chemotherapy.  Curr Opin Ophthalmol. 2010;21(3):203-21220224400PubMedGoogle ScholarCrossref
Vajzovic LM, Murray TG, Aziz-Sultan MA,  et al.  Supraselective intra-arterial chemotherapy: evaluation of treatment-related complications in advanced retinoblastoma.  Clin Ophthalmol. 2011;5:171-17621383945PubMedGoogle Scholar
Peterson EC, Elhammady MS, Quintero-Wolfe S,  et al.  Selective ophthalmic artery infusion of chemotherapy for advanced intraocular retinoblastoma: initial experience with 17 tumors [published online ahead of print February 4, 2011].  J Neurosurg. 2011;114(6):1603-160821294621PubMedGoogle ScholarCrossref
Munier FL, Beck-Popovic M, Balmer A, Gaillard MC, Bovey E, Binaghi S. Occurrence of sectoral choroidal occlusive vasculopathy and retinal arteriolar embolization after superselective ophthalmic artery chemotherapy for advanced intraocular retinoblastoma.  Retina. 2011;31(3):566-57321273941PubMedGoogle ScholarCrossref
Samuels BL, Bitran JD. High-dose intravenous melphalan: a review.  J Clin Oncol. 1995;13(7):1786-17997602368PubMedGoogle Scholar
Institute for Laboratory Animal Research.  Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press; 1996
Wilson MW, Zhang Q, Steinle JJ. Exposure of human retinal endothelial cells to high-dose chemotherapy upregulates inflammation and chemotaxis. Presented at: The Annual Meeting of the Association for Research in Vision and Ophthalmology; May 2011; Ft Lauderdale, Florida
Li J, Jin C, Cleveland JC Jr,  et al.  Enhanced inflammatory responses to toll-like receptor 2/4 stimulation in type 1 diabetic coronary artery endothelial cells: the effect of insulin.  Cardiovasc Diabetol. 2010;9:9021162749doi:10.1186/1475-2840-9-90PubMedGoogle ScholarCrossref
Walshe TE, Connell P, Cryan L, Ferguson G, O’Brien C, Cahill PA. The role of pulsatile flow in controlling microvascular retinal endothelial and pericyte cell apoptosis and proliferation.  Cardiovasc Res. 2011;89(3):661-67021030535PubMedGoogle ScholarCrossref
Lebowitz MH, Masuda JY, Beckerman JH. The pH and acidity of intravenous infusion solutions.  JAMA. 1971;215(12):1937-19405107833PubMedGoogle ScholarCrossref
Elfving G, Saikku K. Effect of pH on the incidence of infusion thrombophlebitis.  Lancet. 1966;1(7444):9534160648PubMedGoogle ScholarCrossref
Fonkalsrud EW, Murphy JL, Smith FG Jr. Effect of pH in glucose infusions on development of thrombophlebitis.  J Surg Res. 1968;8(11):539-5435687385PubMedGoogle ScholarCrossref
Berg SL, Aleksic A, McGuffey L,  et al.  Plasma and cerebrospinal fluid pharmacokinetics of rebeccamycin (NSC 655649) in nonhuman primates.  Cancer Chemother Pharmacol. 2004;54(2):127-13015150671PubMedGoogle ScholarCrossref
Berg SL, Stone J, Xiao JJ,  et al.  Plasma and cerebrospinal fluid pharmacokinetics of depsipeptide (FR901228) in nonhuman primates.  Cancer Chemother Pharmacol. 2004;54(1):85-8815042312PubMedGoogle ScholarCrossref
Berg S, Serabe B, Aleksic A,  et al.  Pharmacokinetics and cerebrospinal fluid penetration of phenylacetate and phenylbutyrate in the nonhuman primate.  Cancer Chemother Pharmacol. 2001;47(5):385-39011391852PubMedGoogle ScholarCrossref
Laboratory Sciences
Nov 2011

Real-Time Ophthalmoscopic Findings of Superselective Intraophthalmic Artery Chemotherapy in a Nonhuman Primate Model

Author Affiliations

Author Affiliations: Hamilton Eye Institute and Departments of Ophthalmology (Drs Wilson, Steinle, and Haik and Mss Phillips and Buchanan), Comparative Medicine (Drs Jackson and Mandrell), and Radiology (Dr Williams), University of Tennessee Health Science Center, and Division of Ophthalmology, Departments of Surgery (Drs Wilson and Haik), Pathology (Dr Wilson and Ms Frase), and Pharmaceutical Sciences (Drs Wang and Stewart), St Jude Children's Research Hospital, Memphis, Tennessee; and Department of Radiology, MetroHealth Medical Center, Cleveland, Ohio (Dr Williams).

Arch Ophthalmol. 2011;129(11):1458-1465. doi:10.1001/archophthalmol.2011.330

Objective To report real-time ophthalmoscopic findings during superselective intraophthalmic artery chemotherapy (SSIOAC) in a nonhuman primate model.

Methods Six adult male Rhesus macaques (Macacca mulatta) were randomly assigned to 1 of 2 treatment cohorts: melphalan (5 mg/30 mL) or carboplatin (30 mg/30 mL). Each animal underwent 3 separate SSIOAC procedures at 3-week intervals. Digital retinal images were obtained during each infusion. Intravenous fluorescein angiography was performed immediately after each procedure.

Results All SSIOAC procedures were successfully completed. Toxicities were equally distributed between drug cohorts. Systemic toxicities included mild bone marrow suppression in all animals and anorexia in 1. One animal had greater than 50% narrowing of the treated ophthalmic artery after its second infusion. All 18 procedures (100%) resulted in pulsatile optic nerve and choroid blanching, retinal artery narrowing, and retinal edema. Of the 18 procedures, retinal artery sheathing was found during 17 (94%), and retinal artery precipitates were seen in 10 (56%); choroidal hypoperfusion was seen by fluorescein angiogram in 18 (100%).

Conclusion Real-time ophthalmic investigations are useful and, in our nonhuman primate model, indicate prevalent, acute ocular vascular toxicities during SSIOAC.

Clinical Relevance Real-time retinal imaging is feasible in a nonhuman primate model of SSIOAC. Application to SSIOAC in children may shed insight into reported vascular toxicities.