Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations: Safety and Efficacy in 15 Children and Adults Followed Up to 3 Years | Genetics and Genomics | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa.  N Engl J Med. 2010;363(17):1669-167120961252PubMedGoogle ScholarCrossref
2.
Travis GH, Golczak M, Moise AR, Palczewski K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents.  Annu Rev Pharmacol Toxicol. 2007;47:469-51216968212PubMedGoogle ScholarCrossref
3.
Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy.  Prog Retin Eye Res. 2010;29(5):398-42720399883PubMedGoogle ScholarCrossref
4.
Acland GM, Aguirre GD, Ray J,  et al.  Gene therapy restores vision in a canine model of childhood blindness.  Nat Genet. 2001;28(1):92-9511326284PubMedGoogle Scholar
5.
Aguirre GK, Komáromy AM, Cideciyan AV,  et al.  Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation.  PLoS Med. 2007;4(6):e23017594175PubMedGoogle ScholarCrossref
6.
Lai CM, Yu MJ, Brankov M,  et al.  Recombinant adeno-associated virus type 2-mediated gene delivery into the Rpe65-/- knockout mouse eye results in limited rescue.  Genet Vaccines Ther. 2004;2(1):315109394PubMedGoogle ScholarCrossref
7.
Dejneka NS, Surace EM, Aleman TS,  et al.  In utero gene therapy rescues vision in a murine model of congenital blindness.  Mol Ther. 2004;9(2):182-18814759802PubMedGoogle ScholarCrossref
8.
Jacobson SG, Aleman TS, Cideciyan AV,  et al.  Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success.  Proc Natl Acad Sci U S A. 2005;102(17):6177-618215837919PubMedGoogle ScholarCrossref
9.
Pang JJ, Chang B, Kumar A,  et al.  Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis.  Mol Ther. 2006;13(3):565-57216223604PubMedGoogle ScholarCrossref
10.
Bemelmans AP, Kostic C, Crippa SV,  et al.  Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis.  PLoS Med. 2006;3(10):e34717032058PubMedGoogle ScholarCrossref
11.
Chen Y, Moiseyev G, Takahashi Y, Ma JX. RPE65 gene delivery restores isomerohydrolase activity and prevents early cone loss in Rpe65-/- mice.  Invest Ophthalmol Vis Sci. 2006;47(3):1177-118416505056PubMedGoogle ScholarCrossref
12.
Acland GM, Aguirre GD, Bennett J,  et al.  Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness.  Mol Ther. 2005;12(6):1072-108216226919PubMedGoogle ScholarCrossref
13.
Jacobson SG, Acland GM, Aguirre GD,  et al.  Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection.  Mol Ther. 2006;13(6):1074-108416644289PubMedGoogle ScholarCrossref
14.
Jacobson SG, Boye SL, Aleman TS,  et al.  Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis.  Hum Gene Ther. 2006;17(8):845-85816942444PubMedGoogle ScholarCrossref
15.
Bainbridge JW, Smith AJ, Barker SS,  et al.  Effect of gene therapy on visual function in Leber's congenital amaurosis.  N Engl J Med. 2008;358(21):2231-223918441371PubMedGoogle ScholarCrossref
16.
Maguire AM, Simonelli F, Pierce EA,  et al.  Safety and efficacy of gene transfer for Leber's congenital amaurosis.  N Engl J Med. 2008;358(21):2240-224818441370PubMedGoogle ScholarCrossref
17.
Hauswirth WW, Aleman TS, Kaushal S,  et al.  Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial.  Hum Gene Ther. 2008;19(10):979-99018774912PubMedGoogle ScholarCrossref
18.
Cideciyan AV, Aleman TS, Boye SL,  et al.  Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics.  Proc Natl Acad Sci U S A. 2008;105(39):15112-1511718809924PubMedGoogle ScholarCrossref
19.
Banin E, Bandah-Rozenfeld D, Obolensky A,  et al.  Molecular anthropology meets genetic medicine to treat blindness in the North African Jewish population: human gene therapy initiated in Israel.  Hum Gene Ther. 2010;21(12):1749-175720604683PubMedGoogle ScholarCrossref
20.
Cideciyan AV, Hauswirth WW, Aleman TS,  et al.  Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year.  Hum Gene Ther. 2009;20(9):999-100419583479PubMedGoogle ScholarCrossref
21.
Maguire AM, High KA, Auricchio A,  et al.  Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial.  Lancet. 2009;374(9701):1597-160519854499PubMedGoogle ScholarCrossref
22.
Simonelli F, Maguire AM, Testa F,  et al.  Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration.  Mol Ther. 2010;18(3):643-65019953081PubMedGoogle ScholarCrossref
23.
Bainbridge JW, Smith AJ, Rubin GS,  et al. Clinical trial of gene therapy for early onset severe retinal dystrophy caused by defects in RPE65. Poster presented at: Association for Research in Vision and Ophthalmology 2010 Annual Meeting; May 2-6, 2010; Fort Lauderdale, FL. Abstract E-4493
24.
Cideciyan AV, Hauswirth WW, Aleman TS,  et al.  Vision 1 year after gene therapy for Leber's congenital amaurosis.  N Engl J Med. 2009;361(7):725-72719675341PubMedGoogle ScholarCrossref
25.
Hogan MJ, Kimura SJ, Thygeson P. Signs and symptoms of uveitis, I: anterior uveitis.  Am J Ophthalmol. 1959;47(5, pt 2):155-17013649855PubMedGoogle Scholar
26.
Nussenblatt RB, Palestine AG, Chan CC, Roberge F. Standardization of vitreal inflammatory activity in intermediate and posterior uveitis.  Ophthalmology. 1985;92(4):467-4714000641PubMedGoogle Scholar
27.
Ladas JG, Wheeler NC, Morhun PJ, Rimmer SO, Holland GN. Laser flare-cell photometry: methodology and clinical applications.  Surv Ophthalmol. 2005;50(1):27-4715621076PubMedGoogle ScholarCrossref
28.
Ferris FL III, Kassoff A, Bresnick GH, Bailey I. New visual acuity charts for clinical research.  Am J Ophthalmol. 1982;94(1):91-967091289PubMedGoogle Scholar
29.
Jacobson SG, Aleman TS, Cideciyan AV,  et al.  Human cone photoreceptor dependence on RPE65 isomerase.  Proc Natl Acad Sci U S A. 2007;104(38):15123-1512817848510PubMedGoogle ScholarCrossref
30.
Roman AJ, Schwartz SB, Aleman TS,  et al.  Quantifying rod photoreceptor-mediated vision in retinal degenerations: dark-adapted thresholds as outcome measures.  Exp Eye Res. 2005;80(2):259-27215670804PubMedGoogle ScholarCrossref
31.
Roman AJ, Cideciyan AV, Aleman TS, Jacobson SG. Full-field stimulus testing (FST) to quantify visual perception in severely blind candidates for treatment trials.  Physiol Meas. 2007;28(8):N51-N5617664667PubMedGoogle ScholarCrossref
32.
Jacobson SG, Voigt WJ, Parel JM,  et al.  Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa.  Ophthalmology. 1986;93(12):1604-16113808619PubMedGoogle Scholar
33.
Jacobson SG, Aleman TS, Cideciyan AV,  et al.  Defining the residual vision in Leber congenital amaurosis caused by RPE65 mutations.  Invest Ophthalmol Vis Sci. 2009;50(5):2368-237519117922PubMedGoogle ScholarCrossref
34.
Aleman TS, Jacobson SG, Chico JD,  et al.  Impairment of the transient pupillary light reflex in Rpe65(-/-) mice and humans with Leber congenital amaurosis.  Invest Ophthalmol Vis Sci. 2004;45(4):1259-127115037595PubMedGoogle ScholarCrossref
35.
Haymes S, Guest D, Heyes A, Johnston A. Comparison of functional mobility performance with clinical vision measures in simulated retinitis pigmentosa.  Optom Vis Sci. 1994;71(7):442-4537970559PubMedGoogle ScholarCrossref
36.
Geruschat DR, Turano KA, Stahl JW. Traditional measures of mobility performance and retinitis pigmentosa.  Optom Vis Sci. 1998;75(7):525-5379703042PubMedGoogle ScholarCrossref
37.
Turano KA, Broman AT, Bandeen-Roche K, Munoz B, Rubin GS, West S.SEE Project Team.  Association of visual field loss and mobility performance in older adults: Salisbury Eye Evaluation Study.  Optom Vis Sci. 2004;81(5):298-30715181354PubMedGoogle ScholarCrossref
38.
Hartong DT, Jorritsma FF, Neve JJ, Melis-Dankers BJ, Kooijman AC. Improved mobility and independence of night-blind people using night-vision goggles.  Invest Ophthalmol Vis Sci. 2004;45(6):1725-173115161832PubMedGoogle ScholarCrossref
39.
Leat SJ, Lovie-Kitchin JE. Measuring mobility performance: experience gained in designing a mobility course.  Clin Exp Optom. 2006;89(4):215-22816776729PubMedGoogle ScholarCrossref
40.
Rubin GS, Bainbridge JW, Roche ,  et al. Visually-guided mobility in patients treated with gene therapy for Leber's congenital amaurosis. Poster presented at: Association for Research in Vision and Ophthalmology 2010 Annual Meeting; May 2-6, 2010; Fort Lauderdale, FL. Abstract E-1392
41.
Sandberg MA, Brockhurst RJ, Gaudio AR, Berson EL. The association between visual acuity and central retinal thickness in retinitis pigmentosa.  Invest Ophthalmol Vis Sci. 2005;46(9):3349-335416123439PubMedGoogle ScholarCrossref
42.
Pang JJ, Chang B, Hawes NL,  et al.  Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA).  Mol Vis. 2005;11:152-16215765048PubMedGoogle Scholar
43.
Roman AJ, Boye SL, Aleman TS,  et al.  Electroretinographic analyses of Rpe65-mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis.  Mol Vis. 2007;13:1701-171017960108PubMedGoogle Scholar
44.
Sieving PA, Caruso RC, Tao W,  et al.  Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants.  Proc Natl Acad Sci U S A. 2006;103(10):3896-390116505355PubMedGoogle ScholarCrossref
45.
Miller JW. Preliminary results of gene therapy for retinal degeneration.  N Engl J Med. 2008;358(21):2282-228418441372PubMedGoogle ScholarCrossref
46.
Thompson JT. Advantages and limitations of small gauge vitrectomy.  Surv Ophthalmol. 2011;56(2):162-17221236459PubMedGoogle ScholarCrossref
47.
Fisher SK, Lewis GP, Linberg KA, Verardo MR. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment.  Prog Retin Eye Res. 2005;24(3):395-43115708835PubMedGoogle ScholarCrossref
48.
Ricker LJ, Noordzij LJ, Goezinne F,  et al.  Persistent subfoveal fluid and increased preoperative foveal thickness impair visual outcome after macula-off retinal detachment repair [published online ahead of print April 23, 2011].  Retinadoi:10.1097/IAE.0b013e31820a6910Google Scholar
49.
Jacobson SG, Cideciyan AV, Aleman TS,  et al.  Photoreceptor layer topography in children with Leber congenital amaurosis caused by RPE65 mutations.  Invest Ophthalmol Vis Sci. 2008;49(10):4573-457718539930PubMedGoogle ScholarCrossref
50.
Yin L, Greenberg K, Hunter JJ,  et al.  Intravitreal injection of AAV2 transduces macaque inner retina.  Invest Ophthalmol Vis Sci. 2011;52(5):2775-278321310920PubMedGoogle ScholarCrossref
51.
Caruso RC, Aleman TS, Cideciyan AV,  et al.  Retinal disease in Rpe65-deficient mice: comparison to human Leber congenital amaurosis due to RPE65 mutations.  Invest Ophthalmol Vis Sci. 2010;51(10):5304-531320484585PubMedGoogle ScholarCrossref
52.
Anderson DH, Fisher SK. The relationship of primate foveal cones to the pigment epithelium.  J Ultrastruct Res. 1979;67(1):23-32109622PubMedGoogle ScholarCrossref
53.
Wang JS, Kefalov VJ. The cone-specific visual cycle.  Prog Retin Eye Res. 2011;30(2):115-12821111842PubMedGoogle ScholarCrossref
54.
Znoiko SL, Crouch RK, Moiseyev G, Ma JX. Identification of the RPE65 protein in mammalian cone photoreceptors.  Invest Ophthalmol Vis Sci. 2002;43(5):1604-160911980880PubMedGoogle Scholar
55.
Tang PH, Wheless L, Crouch RK. Regeneration of photopigment is enhanced in mouse cone photoreceptors expressing RPE65 protein.  J Neurosci. 2011;31(28):10403-1041121753017PubMedGoogle ScholarCrossref
Clinical Trial
Jan 2012

Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations: Safety and Efficacy in 15 Children and Adults Followed Up to 3 Years

Author Affiliations

Author Affiliations: Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania (Drs Jacobson, Cideciyan, Aleman, Sumaroka, and Swider, Ms Schwartz, Olivares, and Mullins, and Mr Roman), and Gene Therapy Program, Department of Pathology, Laboratory of Medicine, University of Pennsylvania School of Medicine (Dr Calcedo), Philadelphia; Department of Ophthalmology (Drs Ratnakarama, Peden, Conlon, Pang, Kaushal, and Hauswirth and Mr Boye), Powell Gene Therapy Center (Ms Erger and Drs Byrne and Hauswirth), University of Florida, Gainesville, and Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami (Mr Feuer), Florida; Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Ontario, Canada (Dr Heon); Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis (Dr Iannaccone); The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Illinois (Dr Fishman); and Department of Ophthalmology, University of Iowa Carver College of Medicine, Iowa City (Dr Stone).

Arch Ophthalmol. 2012;130(1):9-24. doi:10.1001/archophthalmol.2011.298
Abstract

Objective To determine the safety and efficacy of subretinal gene therapy in the RPE65 form of Leber congenital amaurosis using recombinant adeno-associated virus 2 (rAAV2) carrying the RPE65 gene.

Design Open-label, dose-escalation phase I study of 15 patients (range, 11-30 years of age) evaluated after subretinal injection of the rAAV2- RPE65 vector into the worse-functioning eye. Five cohorts represented 4 dose levels and 2 different injection strategies.

Main Outcome Measures Primary outcomes were systemic and ocular safety. Secondary outcomes assayed visual function with dark-adapted full-field sensitivity testing and visual acuity with Early Treatment Diabetic Retinopathy Study charts. Further assays included immune responses to the vector, static visual fields, pupillometry, mobility performance, and optical coherence tomography.

Results No systemic toxicity was detected; ocular adverse events were related to surgery. Visual function improved in all patients to different degrees; improvements were localized to treated areas. Cone and rod sensitivities increased significantly in the study eyes but not in the control eyes. Minor acuity improvements were recorded in many study and control eyes. Major acuity improvements occurred in study eyes with the lowest entry acuities and parafoveal fixation loci treated with subretinal injections. Other patients with better foveal structure lost retinal thickness and acuity after subfoveal injections.

Conclusions Gene therapy for Leber congenital amaurosis caused by RPE65 mutations is sufficiently safe and substantially efficacious in the extrafoveal retina. There is no benefit and some risk in treating the fovea. No evidence of age-dependent effects was found. Our results point to specific treatment strategies for subsequent phases.

Application to Clinical Practice Gene therapy for inherited retinal disease has the potential to become a future part of clinical practice.

Trial Registration clinicaltrials.gov Identifier: NCT00481546

×