Geographic and Climatic Factors Associated With Exfoliation Syndrome | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.238.77. Please contact the publisher to request reinstatement.
1.
Ritch R. Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma.  J Glaucoma. 1994;3(2):176-17719920577PubMedGoogle Scholar
2.
Ritch R, Schlötzer-Schrehardt U, Konstas AG. Why is glaucoma associated with exfoliation syndrome?  Prog Retin Eye Res. 2003;22(3):253-27512852486PubMedGoogle ScholarCrossref
3.
Puska P, Tarkkanen A. Exfoliation syndrome as a risk factor for cataract development: five-year follow-up of lens opacities in exfoliation syndrome.  J Cataract Refract Surg. 2001;27(12):1992-199811738916PubMedGoogle ScholarCrossref
4.
Shingleton BJ, Heltzer J, O’Donoghue MW. Outcomes of phacoemulsification in patients with and without pseudoexfoliation syndrome.  J Cataract Refract Surg. 2003;29(6):1080-108612842671PubMedGoogle ScholarCrossref
5.
Schlötzer-Schrehardt U, Naumann GO. A histopathologic study of zonular instability in pseudoexfoliation syndrome.  Am J Ophthalmol. 1994;118(6):730-7437977599PubMedGoogle Scholar
6.
Skuta GL, Parrish RK II, Hodapp E, Forster RK, Rockwood EJ. Zonular dialysis during extracapsular cataract extraction in pseudoexfoliation syndrome.  Arch Ophthalmol. 1987;105(5):632-6343619736PubMedGoogle ScholarCrossref
7.
Harnisch JP, Barrach HJ, Hassell JR, Sinha PK. Identification of a basement membrane proteoglycan in exfoliation material.  Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1981;215(4):273-2787013555PubMedGoogle ScholarCrossref
8.
Schlötzer-Schrehardt U, Dörfler S, Naumann GO. Immunohistochemical localization of basement membrane components in pseudoexfoliation material of the lens capsule.  Curr Eye Res. 1992;11(4):343-3551388118PubMedGoogle ScholarCrossref
9.
Uusitalo M, Kiveldä T, Tarkkanen A. Immunoreactivity of exfoliation material for the cell adhesion-related HNK-1 carbohydrate epitope.  Arch Ophthalmol. 1993;111(10):1419-14237692839PubMedGoogle ScholarCrossref
10.
Tawara A, Fujisawa K, Kiyosawa R, Inomata H. Distribution and characterization of proteoglycans associated with exfoliation material.  Curr Eye Res. 1996;15(11):1101-11118950504PubMedGoogle ScholarCrossref
11.
Sharma S, Chataway T, Burdon KP,  et al.  Identification of LOXL1 protein and Apolipoprotein E as components of surgically isolated pseudoexfoliation material by direct mass spectrometry.  Exp Eye Res. 2009;89(4):479-48519442659PubMedGoogle ScholarCrossref
12.
Ovodenko B, Rostagno A, Neubert TA,  et al.  Proteomic analysis of exfoliation deposits.  Invest Ophthalmol Vis Sci. 2007;48(4):1447-145717389470PubMedGoogle ScholarCrossref
13.
Streeten BW, Li ZY, Wallace RN, Eagle RC Jr, Keshgegian AA. Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome.  Arch Ophthalmol. 1992;110(12):1757-17621463419PubMedGoogle ScholarCrossref
14.
Schlötzer-Schrehardt UM, Koca MR, Naumann GO, Volkholz H. Pseudoexfoliation syndrome: ocular manifestation of a systemic disorder?  Arch Ophthalmol. 1992;110(12):1752-17561463418PubMedGoogle ScholarCrossref
15.
Al-Ghadyan AA, Cotlier E. Rise in lens temperature on exposure to sunlight or high ambient temperature.  Br J Ophthalmol. 1986;70(6):421-4263718905PubMedGoogle ScholarCrossref
16.
Vessani RM, Ritch R, Liebmann JM, Jofe M. Plasma homocysteine is elevated in patients with exfoliation syndrome.  Am J Ophthalmol. 2003;136(1):41-4612834668PubMedGoogle ScholarCrossref
17.
Leibovitch I, Kurtz S, Shemesh G,  et al.  Hyperhomocystinemia in pseudoexfoliation glaucoma.  J Glaucoma. 2003;12(1):36-3912567109PubMedGoogle ScholarCrossref
18.
Puustjärvi T, Blomster H, Kontkanen M, Punnonen K, Teräsvirta M. Plasma and aqueous humour levels of homocysteine in exfoliation syndrome.  Graefes Arch Clin Exp Ophthalmol. 2004;242(9):749-75415052489PubMedGoogle ScholarCrossref
19.
Altintaş O, Maral H, Yüksel N, Karabaş VL, Dillioğlugil MO, Cağlar Y. Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma.  Graefes Arch Clin Exp Ophthalmol. 2005;243(7):677-68315688159PubMedGoogle ScholarCrossref
20.
Cumurcu T, Sahin S, Aydin E. Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma.  BMC Ophthalmol. 2006;6:616504073PubMedGoogle ScholarCrossref
21.
Roedl JB, Bleich S, Reulbach U,  et al.  Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma.  J Neural Transm. 2007;114(5):571-57517238009PubMedGoogle ScholarCrossref
22.
Aydoğan Ozkan B, Yüksel N, Keskin G,  et al.  Homocysteine levels in plasma and sensorineural hearing loss in patients with pseudoexfoliation syndrome.  Eur J Ophthalmol. 2006;16(4):542-54716952092PubMedGoogle Scholar
23.
Cahill M, Early A, Stack S, Blayney AW, Eustace P. Pseudoexfoliation and sensorineural hearing loss.  Eye (Lond). 2002;16(3):261-26612032714PubMedGoogle ScholarCrossref
24.
Detorakis ET, Chrysochoou F, Paliobei V,  et al.  Evaluation of the acoustic function in pseudoexfoliation syndrome and exfoliation glaucoma: audiometric and tympanometric findings.  Eur J Ophthalmol. 2008;18(1):71-7618203088PubMedGoogle Scholar
25.
Shaban RI, Asfour WM. Ocular pseudoexfoliation associated with hearing loss.  Saudi Med J. 2004;25(9):1254-125715448778PubMedGoogle Scholar
26.
Turacli ME, Ozdemir FA, Tekeli O, Gökcan K, Gerçeker M, Dürük K. Sensorineural hearing loss in pseudoexfoliation.  Can J Ophthalmol. 2007;42(1):56-5917361242PubMedGoogle Scholar
27.
Yazdani S, Tousi A, Pakravan M, Faghihi AR. Sensorineural hearing loss in pseudoexfoliation syndrome.  Ophthalmology. 2008;115(3):425-42918187196PubMedGoogle ScholarCrossref
28.
Tarkkanen A. Is exfoliation syndrome a sign of systemic vascular disease?  Acta Ophthalmol. 2008;86(8):832-83619086926PubMedGoogle ScholarCrossref
29.
Thorleifsson G, Magnusson KP, Sulem P,  et al.  Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma.  Science. 2007;317(5843):1397-140017690259PubMedGoogle ScholarCrossref
30.
Challa P. Genetics of pseudoexfoliation syndrome.  Curr Opin Ophthalmol. 2009;20(2):88-9119240540PubMedGoogle ScholarCrossref
31.
Ringvold A, Blika S, Elsås T,  et al.  The prevalence of pseudoexfoliation in three separate municipalities of Middle-Norway: a preliminary report.  Acta Ophthalmol Suppl. 1987;182:17-202837055PubMedGoogle Scholar
32.
Krause U, Alanko HI, Kärnä J,  et al.  Prevalence of exfoliation syndrome in Finland.  Acta Ophthalmol Suppl. 1988;184:120-1222853908PubMedGoogle Scholar
33.
Aström S, Lindén C. Incidence and prevalence of pseudoexfoliation and open-angle glaucoma in northern Sweden, I: baseline report.  Acta Ophthalmol Scand. 2007;85(8):828-83117986290PubMedGoogle ScholarCrossref
34.
Forsius H. Prevalence of pseudoexfoliation of the lens in Finns, Lapps, Icelanders, Eskimos, and Russians.  Trans Ophthalmol Soc U K. 1979;99(2):296-298298430PubMedGoogle Scholar
35.
Young AL, Tang WW, Lam DS. The prevalence of pseudoexfoliation syndrome in Chinese people.  Br J Ophthalmol. 2004;88(2):193-19514736771PubMedGoogle ScholarCrossref
36.
 World Health Organization. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). Geneva, Switzerland: World Health Organization; 2006
37.
Beebe M, Dalton JA, Espronceda M, Evans DD, Glenn RL. CPT 2007 Professional Edition. Chicago, IL: American Medical Association Press; 2006
38.
Schneeweiss S, Doherty M, Zhu S,  et al.  Topical treatments with pimecrolimus, tacrolimus and medium- to high-potency corticosteroids, and risk of lymphoma.  Dermatology. 2009;219(1):7-2119293564PubMedGoogle ScholarCrossref
39.
Cartsos VM, Zhu S, Zavras AI. Bisphosphonate use and the risk of adverse jaw outcomes: a medical claims study of 714,217 people.  J Am Dent Assoc. 2008;139(1):23-3018167381PubMedGoogle Scholar
40.
Cnaan A, Ryan L. Survival analysis in natural history studies of disease.  Stat Med. 1989;8(10):1255-12682814073PubMedGoogle ScholarCrossref
41.
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.  J Chronic Dis. 1987;40(5):373-3833558716PubMedGoogle ScholarCrossref
42.
Hernán MA, Olek MJ, Ascherio A. Geographic variation of MS incidence in two prospective studies of US women.  Neurology. 1999;53(8):1711-171810563617PubMedGoogle ScholarCrossref
43.
 Compare climates. Sperling's Best Places Web site. http://www.bestplaces.net/climate. Accessed June 2, 2011
44.
Aasved H. Prevalence of fibrillopathia epitheliocapsularis (pseudoexfoliation) and capsular glaucoma.  Trans Ophthalmol Soc U K. 1979;99(2):293-295298429PubMedGoogle Scholar
45.
Arnarsson A, Damji KF, Sverrisson T, Sasaki H, Jonasson F. Pseudoexfoliation in the Reykjavik Eye Study: prevalence and related ophthalmological variables.  Acta Ophthalmol Scand. 2007;85(8):822-82718028119PubMedGoogle ScholarCrossref
46.
Cashwell LF Jr, Shields MB. Exfoliation syndrome: prevalence in a southeastern United States population.  Arch Ophthalmol. 1988;106(3):335-3363345150PubMedGoogle ScholarCrossref
47.
Miyazaki M, Kubota T, Kubo M,  et al.  The prevalence of pseudoexfoliation syndrome in a Japanese population: the Hisayama study.  J Glaucoma. 2005;14(6):482-48416276281PubMedGoogle ScholarCrossref
48.
Cursiefen C, Hammer T, Küchle M, Naumann GO, Schlötzer-Schrehardt U. Pseudoexfoliation syndrome in eyes with ischemic central retinal vein occlusion: a histopathologic and electron microscopic study.  Acta Ophthalmol Scand. 2001;79(5):476-47811594982PubMedGoogle ScholarCrossref
49.
Ritch R, Prata TS, de Moraes CG,  et al.  Association of exfoliation syndrome and central retinal vein occlusion: an ultrastructural analysis.  Acta Ophthalmol. 2010;88(1):91-9519725816PubMedGoogle ScholarCrossref
50.
Saatci OA, Ferliel ST, Ferliel M, Kaynak S, Ergin MH. Pseudoexfoliation and glaucoma in eyes with retinal vein occlusion.  Int Ophthalmol. 1999;23(2):75-7811196123PubMedGoogle ScholarCrossref
51.
Rudkin AK, Edussuriya K, Sennanayake S,  et al.  Prevalence of exfoliation syndrome in central Sri Lanka: the Kandy Eye Study.  Br J Ophthalmol. 2008;92(12):1595-159818927228PubMedGoogle ScholarCrossref
52.
Arvind H, Raju P, Paul PG,  et al.  Pseudoexfoliation in South India.  Br J Ophthalmol. 2003;87(11):1321-132314609823PubMedGoogle ScholarCrossref
53.
Rao RQ, Arain TM, Ahad MA. The prevalence of pseudoexfoliation syndrome in Pakistan: hospital based study.  BMC Ophthalmol. 2006;6:2716792800PubMedGoogle ScholarCrossref
54.
Topouzis F, Wilson MR, Harris A,  et al.  Prevalence of open-angle glaucoma in Greece: the Thessaloniki Eye Study.  Am J Ophthalmol. 2007;144(4):511-51917893012PubMedGoogle ScholarCrossref
55.
Ball SF. Exfoliation syndrome prevalence in the glaucoma population of South Louisiana.  Acta Ophthalmol Suppl. 1988;184:93-982853928PubMedGoogle Scholar
56.
Krause U, Helve J, Forsius H. Pseudoexfoliation of the lens capsule and liberation of iris pigment.  Acta Ophthalmol (Copenh). 1973;51(1):39-464739675PubMedGoogle ScholarCrossref
57.
Sveinsson K. The frequency of senile exfoliation in Iceland: fibrillopathy or pseudoexfoliation.  Acta Ophthalmol (Copenh). 1974;52(5):596-6024479477PubMedGoogle ScholarCrossref
58.
Lee RK. The molecular pathophysiology of pseudoexfoliation glaucoma.  Curr Opin Ophthalmol. 2008;19(2):95-10118301281PubMedGoogle ScholarCrossref
59.
Forsius H, Luukka H. Pseudoexfoliation of the anterior capsule of the lens in Lapps and Eskimos.  Can J Ophthalmol. 1973;8(2):274-2774707213PubMedGoogle Scholar
60.
Blackburn DG. Why race is not a biological concept. In: Lang B, ed. Race and Racism in Theory and Practice. New York, NY: Rowman & Littlefield Publishers Inc; 2000:3-26
61.
Resnikoff S, Filliard G, Dell’Aquila B. Climatic droplet keratopathy, exfoliation syndrome, and cataract.  Br J Ophthalmol. 1991;75(12):734-7361768663PubMedGoogle ScholarCrossref
62.
Gray RH, Johnson GJ, Freedman A. Climatic droplet keratopathy.  Surv Ophthalmol. 1992;36(4):241-2531549808PubMedGoogle ScholarCrossref
63.
Taylor HR. Pseudoexfoliation, an environmental disease?  Trans Ophthalmol Soc U K. 1979;99(2):302-307298432PubMedGoogle Scholar
64.
Faulkner HW. Pseudo-exfoliation of the lens among the Navajo Indians.  Am J Ophthalmol. 1971;72(1):206-2075571208PubMedGoogle Scholar
65.
Zuclich JA. Ultraviolet-induced photochemical damage in ocular tissues.  Health Phys. 1989;56(5):671-6822651362PubMedGoogle ScholarCrossref
66.
Taylor HR, Hollows FC, Moran D. Pseudoexfoliation of the lens in Australian Aborigines.  Br J Ophthalmol. 1977;61(7):473-475889760PubMedGoogle ScholarCrossref
67.
Forsius H, Forsman E, Fellman J, Eriksson AW. Exfoliation syndrome: frequency, gender distribution and association with climatically induced alterations of the cornea and conjunctiva.  Acta Ophthalmol Scand. 2002;80(5):478-48412390157PubMedGoogle ScholarCrossref
Epidemiology
Aug 2011

Geographic and Climatic Factors Associated With Exfoliation Syndrome

Author Affiliations

Author Affiliations: Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor (Dr Stein, Kim, Reed, and Richards and Ms Talwar); Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (Drs Pasquale and Wiggs), and Department of Medicine, Channing Laboratory, Brigham and Women's Hospital (Dr Kang), Harvard Medical School, Boston, Massachusetts; and Departments of Biostatistics (Dr Nan) and Epidemiology (Dr Richards), University of Michigan School of Public Health, Ann Arbor.

Arch Ophthalmol. 2011;129(8):1053-1060. doi:10.1001/archophthalmol.2011.191
Abstract

Objective To identify geographic and climatic risk factors associated with exfoliation syndrome (ES).

Methods A retrospective study of 626 901 eye care recipients, dating from 2001 to 2007 from 47 US states in a managed care network. Incident ES cases-patients (N = 3367) were identified by using billing codes. We assessed the risk of ES by geographic latitude tier in the continental United States and assigned state-level climatic data (eg, ambient temperature, elevation, and sun exposure) according to patients' residential location. The hazard of ES was calculated by using multivariable-adjusted Cox proportional hazards regression models.

Results Compared with middle-tier residence, northern-tier residence (above 42°N) was associated with an increased hazard of ES (adjusted hazard ratio [HR], 2.14; 95% confidence interval [CI], 1.94-2.35). Southern-tier (below 37°N) was associated with a reduced hazard of ES (HR, 0.83; 95% CI, 0.75-0.93). Excluding whites did not change these associations. After adjustment for joint environmental effects, for every 1° increase in July high temperature, the hazard of ES decreased by 9% (HR, 0.91; 95% CI, 0.89-0.93); for every 1° increase in January low temperature, the hazard decreased 3% (0.97; 0.96-0.98). For each additional sunny day annually, the hazard increased by 1.5% (HR, 1.02; 95% CI, 1.01-1.02) in locations with average levels of other climatic factors.

Conclusion Ambient temperature and sun exposure may be important environmental triggers of ES.

×