Changes in Retinal Vessel Diameter and Incidence and Progression of Diabetic Retinopathy | Diabetic Retinopathy | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Klein R, Klein BEK. Vision disorders in diabetes. Klein R, Klein BEK, Harris MI, et al, eds. In: Diabetes in America. 2nd ed. Bethesda, MD: National Diabetes Data Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; 1995:293-338. NIH publication 95-1468
2.
Klein BE, Klein R, McBride PE,  et al.  Cardiovascular disease, mortality, and retinal microvascular characteristics in type 1 diabetes: Wisconsin Epidemiologic Study of Diabetic Retinopathy.  Arch Intern Med. 2004;164(17):1917-192415451768PubMedGoogle ScholarCrossref
3.
Klein R, Klein BE, Moss SE,  et al.  The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy, XIX: the Wisconsin Epidemiologic Study of Diabetic Retinopathy.  Arch Ophthalmol. 2004;122(1):76-8314718299PubMedGoogle ScholarCrossref
4.
Klein R, Klein BE, Moss SE, Wong TY. Retinal vessel caliber and microvascular and macrovascular disease in type 2 diabetes, XXI: the Wisconsin Epidemiologic Study of Diabetic Retinopathy.  Ophthalmology. 2007;114(10):1884-189217540447PubMedGoogle ScholarCrossref
5.
Wong TY. Retinal vessel diameter as a clinical predictor of diabetic retinopathy progression: time to take out the measuring tape.  Arch Ophthalmol. 2011;129(1):95-9621220635PubMedGoogle ScholarCrossref
6.
Alibrahim E, Donaghue KC, Rogers S,  et al.  Retinal vascular caliber and risk of retinopathy in young patients with type 1 diabetes.  Ophthalmology. 2006;113(9):1499-150316828499PubMedGoogle ScholarCrossref
7.
Roy MS, Klein R, Janal MN. Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high-risk characteristics in African Americans with type 1 diabetes mellitus.  Arch Ophthalmol. 2011;129(1):8-1521220623PubMedGoogle ScholarCrossref
8.
Cheung N, Rogers SL, Donaghue KC, Jenkins AJ, Tikellis G, Wong TY. Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes.  Diabetes Care. 2008;31(9):1842-184618523143PubMedGoogle ScholarCrossref
9.
Klein R, Klein BE, Moss SE, DeMets DL, Kaufman I, Voss PS. Prevalence of diabetes mellitus in southern Wisconsin.  Am J Epidemiol. 1984;119(1):54-616691336PubMedGoogle Scholar
10.
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, II: prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years.  Arch Ophthalmol. 1984;102(4):520-5266367724PubMedGoogle ScholarCrossref
11.
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, III: prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years.  Arch Ophthalmol. 1984;102(4):527-5326367725PubMedGoogle ScholarCrossref
12.
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, IX: four-year incidence and progression of diabetic retinopathy when age at diagnosis is less than 30 years.  Arch Ophthalmol. 1989;107(2):237-2432916977PubMedGoogle ScholarCrossref
13.
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, X: four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more.  Arch Ophthalmol. 1989;107(2):244-2492644929PubMedGoogle ScholarCrossref
14.
Klein R, Klein BE, Moss SE, Cruickshanks KJ. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, XIV: ten-year incidence and progression of diabetic retinopathy.  Arch Ophthalmol. 1994;112(9):1217-12287619101PubMedGoogle ScholarCrossref
15.
Klein R, Klein BE, Moss SE, Cruickshanks KJ. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, XVII: the 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes.  Ophthalmology. 1998;105(10):1801-18159787347PubMedGoogle ScholarCrossref
16.
Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, XXII: the twenty-five-year progression of retinopathy in persons with type 1 diabetes.  Ophthalmology. 2008;115(11):1859-186819068374PubMedGoogle ScholarCrossref
17.
The Hypertension Detection and Follow-up Program Cooperative Group.  The hypertension detection and follow-up program: hypertension detection and follow-up program cooperative group.  Prev Med. 1976;5(2):207-215935073PubMedGoogle ScholarCrossref
18.
ETDRS Research Group.  Procedures for completing eye examinations. In: Early Treatment Diabetic Retinopathy Study (ETDRS) Manual of Operations. Springfield, VA: National Technical Information Service; 1985:1-74. NTIS Accession No. PB85-223006/AS
19.
ETDRS Research Group.  Classification of diabetic retinopathy from stereo color fundus photographs. In: Early Treatment Diabetic Retinopathy Study (ETDRS) Manual of Operations. Springfield, VA: National Technical Information Service; 1985:1-54. NTIS Accession No. PB85-223006/AS
20.
Moss SE, Klein R, Klein BE, Spennetta TL, Shrago ES. Methodologic considerations in measuring glycosylated hemoglobin in epidemiologic studies.  J Clin Epidemiol. 1988;41(7):645-6493397760PubMedGoogle ScholarCrossref
21.
Klein R, Klein BE, Magli YL,  et al.  An alternative method of grading diabetic retinopathy.  Ophthalmology. 1986;93(9):1183-11873101021PubMedGoogle Scholar
22.
Early Treatment Diabetic Retinopathy Study Research Group.  Grading diabetic retinopathy from stereoscopic color fundus photographs: an extension of the modified Airlie House classification; ETDRS Report Number 10.  Ophthalmology. 1991;98(5):(suppl)  786-8062062513PubMedGoogle Scholar
23.
Early Treatment Diabetic Retinopathy Study Research Group.  Fundus photographic risk factors for progression of diabetic retinopathy: ETDRS Report Number 12.  Ophthalmology. 1991;98(5):(suppl)  823-8332062515PubMedGoogle Scholar
24.
ETDRS Research Group.  Photocoagulation for diabetic macular edema: Early Treatment Diabetic Retinopathy Study Report Number 1.   Arch Ophthalmol. 1985;103(12):1796-18062866759PubMedGoogle ScholarCrossref
25.
Parr JC, Spears GF. General caliber of the retinal arteries expressed as the equivalent width of the central retinal artery.  Am J Ophthalmol. 1974;77(4):472-4774819451PubMedGoogle Scholar
26.
Hubbard LD, Brothers RJ, King WN,  et al.  Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study.  Ophthalmology. 1999;106(12):2269-228010599656PubMedGoogle ScholarCrossref
27.
Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BE. Revised formulas for summarizing retinal vessel diameters.  Curr Eye Res. 2003;27(3):143-14914562179PubMedGoogle ScholarCrossref
28.
Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes.  Biometrics. 1986;42(1):121-1303719049PubMedGoogle ScholarCrossref
29.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.  Biometrics. 1988;44(3):837-8453203132PubMedGoogle ScholarCrossref
30.
Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond.  Stat Med. 2008;27(2):157-17217569110PubMedGoogle ScholarCrossref
31.
Tso MO, Abrams GW, Jampol LM. Hypertensive retinopathy, choroidopathy, and optic neuropathy: a clinical and pathophysiological approach to classification. In: Singerman LJ, Jampol LM, eds. Retinal and Choroidal Manifestations of Systemic Disease. Baltimore, MD: Williams & Wilkins; 1991:79-127
32.
Klein R, Sharrett AR, Klein BE,  et al.  Are retinal arteriolar abnormalities related to atherosclerosis? the Atherosclerosis Risk in Communities Study.  Arterioscler Thromb Vasc Biol. 2000;20(6):1644-165010845884PubMedGoogle ScholarCrossref
33.
Garner A, Ashton N, Tripathi R, Kohner EM, Bulpitt CJ, Dollery CT. Pathogenesis of hypertensive retinopathy: an experimental study in the monkey.  Br J Ophthalmol. 1975;59(1):3-44804913PubMedGoogle ScholarCrossref
34.
Sharrett AR, Hubbard LD, Cooper LS,  et al.  Retinal arteriolar diameters and elevated blood pressure: the Atherosclerosis Risk in Communities Study.  Am J Epidemiol. 1999;150(3):263-27010430230PubMedGoogle ScholarCrossref
35.
Falck A, Laatikainen L. Retinal vasodilation and hyperglycaemia in diabetic children and adolescents.  Acta Ophthalmol Scand. 1995;73(2):119-1247656137PubMedGoogle ScholarCrossref
36.
Brinchmann-Hansen O, Heier H, Myhre K. Fundus photography of width and intensity profiles of the blood column and the light reflex in retinal vessels.  Acta Ophthalmol (Copenh). 1986;64(S179):9-193962625PubMedGoogle ScholarCrossref
37.
Chambless LE, Folsom AR, Sharrett AR,  et al.  Coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC) study.  J Clin Epidemiol. 2003;56(9):880-89014505774PubMedGoogle ScholarCrossref
38.
Folsom AR, Chambless LE, Ballantyne CM,  et al.  An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the Atherosclerosis Risk in Communities Study.  Arch Intern Med. 2006;166(13):1368-137316832001PubMedGoogle ScholarCrossref
39.
McGeechan K, Macaskill P, Irwig L, Liew G, Wong TY. Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide.  Arch Intern Med. 2008;168(21):2304-231019029492PubMedGoogle ScholarCrossref
40.
 Practical experience with a method for grading diabetic retinopathy. Oakley NW, Joplin GF, Kohner EM, Fraser TR, Goldberg MF, Fine SL, eds. In: Symposium on the Treatment of Diabetic Retinopathy. Washington, DC: US Dept of Health, Education and Welfare; 1968:3-6. Public Health Service publication 1890
41.
Skovborg F, Nielsen AV, Lauritzen E, Hartkopp O. Diameters of the retinal vessels in diabetic and normal subjects.  Diabetes. 1969;18(5):292-2985795853PubMedGoogle Scholar
42.
Wallace J. Vessel measurements in diabetic fundi.  Proc R Soc Med. 1970;63(8):788-7915452237PubMedGoogle Scholar
43.
Stefansson E, Landers MB III, Wolbarsht ML. Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies.  Ophthalmic Surg. 1983;14(3):209-2266190118PubMedGoogle Scholar
44.
Grunwald JE, Riva CE, Sinclair SH, Brucker AJ, Petrig BL. Laser Doppler velocimetry study of retinal circulation in diabetes mellitus.  Arch Ophthalmol. 1986;104(7):991-9962942132PubMedGoogle ScholarCrossref
45.
Patel V, Rassam S, Newsom R, Wiek J, Kohner E. Retinal blood flow in diabetic retinopathy.  BMJ. 1992;305(6855):678-6831393111PubMedGoogle ScholarCrossref
46.
Larsen HW. Diabetic retinopathy: an ophthalmoscopic study with a discussion of the morphologic changes and the pathogenetic factors in this disease.  Acta Ophthalmol Suppl. 1960;(suppl 60)  1-8914414263PubMedGoogle Scholar
47.
Meehan RT, Taylor GR, Rock P, Mader TH, Hunter N, Cymerman A. An automated method of quantifying retinal vascular responses during exposure to novel environmental conditions.  Ophthalmology. 1990;97(7):875-8812381701PubMedGoogle Scholar
48.
Keen H, Chlouverakis C. Metabolic factors in diabetic retinopathy. In: Graymore CN, ed. Biochemistry of the Retina. New York, NY: Academic Press; 1965:123-131
49.
Rand LI, Prud’homme GJ, Ederer F, Canner PL. Factors influencing the development of visual loss in advanced diabetic retinopathy: Diabetic Retinopathy Study (DRS) Report No. 10.  Invest Ophthalmol Vis Sci. 1985;26(7):983-9912409053PubMedGoogle Scholar
50.
Diabetic Retinopathy Study Research Group.  Report No. 7: a modification of the Airlie House classification of diabetic retinopathy.  Invest Ophthalmol Vis Sci. 1981;21(1 pt 2):210-226Google Scholar
51.
 The Airlie Classification of Diabetic Retinopathy. Davis MD, Norton EWD, Myers FL, Goldberg MF, Fine SL, eds. In: Symposium on the Treatment of Diabetic Retinopathy. Washington, DC: US Dept of Health, Education and Welfare; 1968:7-22. Public Health Service publication 1890
52.
Klein R, Klein BE, Moss SE, Cruickshanks KJ. Association of ocular disease and mortality in a diabetic population.  Arch Ophthalmol. 1999;117(11):1487-149510565517PubMedGoogle ScholarCrossref
Epidemiology
ONLINE FIRST
June 2012

Changes in Retinal Vessel Diameter and Incidence and Progression of Diabetic Retinopathy

Author Affiliations

Author Affiliations: Departments of Ophthalmology and Visual Sciences (Drs R. Klein and B. E. K. Klein and Mss Myers and Lee) and Population Health Sciences (Dr Gangnon), University of Wisconsin School of Medicine and Public Health, Madison.

Arch Ophthalmol. 2012;130(6):749-755. doi:10.1001/archophthalmol.2011.2560
Abstract

Objective To describe the relationship of change in retinal vessel diameters to the subsequent 6-year incidence and progression of diabetic retinopathy (DR) and incidence of proliferative diabetic retinopathy (PDR) and macular edema (ME) in persons with diabetes mellitus.

Design A total of 1098 persons with diabetes who had DR graded from fundus photographs and had computer-assisted measurements of the central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE) participated in examinations in 1980-1982, 1984-1986, and 1990-1992.

Results During the first 4-year period, the mean change in CRAE and CRVE was −0.37 and 2.54 μm, respectively. The 6-year incidence and progression of DR and the incidence of PDR and ME from 1984-1986 to 1990-1992 were 56%, 39%, 15%, and 11%, respectively. In multivariate analyses, while controlling for duration, diabetes type, and other factors, an increase of 10 μm in CRVE from 1980-1982 to 1984-1986 was associated with increases in the 6-year incidence of DR (odds ratio [OR], 1.26; 95% CI, 1.10-1.43), progression of DR (OR, 1.21; 95% CI, 1.12-1.30), incidence of PDR (OR, 1.19; 95% CI, 1.07-1.32), and incidence of ME (OR, 1.16; 95% CI, 1.03-1.31). No interactions of these associations by diabetes type were found (data not shown). Change in CRAE was unrelated to the incidence or progression of DR (data not shown).

Conclusions Independent of DR severity level, glycemic control, and other factors, widening of the retinal venular but not arteriolar diameter was associated with subsequent incidence and progression of DR. The CRVE may provide additional information regarding the risk of incidence and progression of DR beyond traditional risk factors.

×