Continuous 24-Hour Monitoring of Intraocular Pressure Patterns With a Contact Lens Sensor: Safety, Tolerability, and Reproducibility in Patients With Glaucoma | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Weinreb RN, Khaw PT. Primary open-angle glaucoma.  Lancet. 2004;363(9422):1711-172015158634PubMedGoogle ScholarCrossref
Goldmann H. [Title not available].  Bull Mem Soc Fr Ophtalmol. 1954;67:474-47813284610PubMedGoogle Scholar
Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness.  Acta Ophthalmol (Copenh). 1975;53(1):34-431172910PubMedGoogle ScholarCrossref
Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis.  J Cataract Refract Surg. 2005;31(1):146-15515721707PubMedGoogle ScholarCrossref
Barkana Y, Anis S, Liebmann J, Tello C, Ritch R. Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma.  Arch Ophthalmol. 2006;124(6):793-79716769832PubMedGoogle ScholarCrossref
Liu JH, Zhang X, Kripke DF, Weinreb RN. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes.  Invest Ophthalmol Vis Sci. 2003;44(4):1586-159012657596PubMedGoogle ScholarCrossref
Liu JH, Weinreb RN. Monitoring intraocular pressure for 24 h.  Br J Ophthalmol. 2011;95(5):599-60021330554PubMedGoogle ScholarCrossref
Liu JH, Medeiros FA, Slight JR, Weinreb RN. Diurnal and nocturnal effects of brimonidine monotherapy on intraocular pressure.  Ophthalmology. 2010;117(11):2075-207920663566PubMedGoogle ScholarCrossref
Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes.  Acta Ophthalmol. 2009;87(4):433-43719016660PubMedGoogle ScholarCrossref
Hjortdal JO, Jensen PK. In vitro measurement of corneal strain, thickness, and curvature using digital image processing.  Acta Ophthalmol Scand. 1995;73(1):5-117627759PubMedGoogle ScholarCrossref
Mansouri K, Weinreb R. Continuous 24-hour intraocular pressure monitoring for glaucoma: time for a paradigm change.  Swiss Med Wkly. 2012;142:w1354522457163PubMedGoogle Scholar
Mansouri K, Shaarawy T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma.  Br J Ophthalmol. 2011;95(5):627-62921216796PubMedGoogle ScholarCrossref
De Smedt S, Mermoud A, Schnyder C. 24-Hour intraocular pressure fluctuation monitoring using an ocular telemetry sensor: tolerability and functionality in healthy subjects [published online May 19, 2011].  J Glaucoma. 2011;21602707PubMedGoogle Scholar
Collins SL, Moore RA, McQuay HJ. The visual analogue pain intensity scale: what is moderate pain in millimetres?  Pain. 1997;72(1-2):95-979272792PubMedGoogle ScholarCrossref
Leonardi M, Leuenberger P, Bertrand D, Bertsch A, Renaud P. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens.  Invest Ophthalmol Vis Sci. 2004;45(9):3113-311715326128PubMedGoogle ScholarCrossref
Landis JR, Koch GG. The measurement of observer agreement for categorical data.  Biometrics. 1977;33(1):159-174843571PubMedGoogle ScholarCrossref
Brautaset RL, Nilsson M, Leach N,  et al.  Corneal and conjunctival epithelial staining in hydrogel contact lens wearers.  Eye Contact Lens. 2008;34(6):312-31618997539PubMedGoogle ScholarCrossref
Chalmers RL, Keay L, Long B, Bergenske P, Giles T, Bullimore MA. Risk factors for contact lens complications in US clinical practices.  Optom Vis Sci. 2010;87(10):725-73520729772PubMedGoogle ScholarCrossref
Nichols KK, Mitchell GL, Simon KM, Chivers DA, Edrington TB. Corneal staining in hydrogel lens wearers.  Optom Vis Sci. 2002;79(1):20-3011828895PubMedGoogle ScholarCrossref
Lakkis C, Brennan NA. Bulbar conjunctival fluorescein staining in hydrogel contact lens wearers.  CLAO J. 1996;22(3):189-1948828936PubMedGoogle Scholar
Levy B. Superficial corneal “staining”: clinical observation and risk assessment.  Eye Contact Lens. 2007;33(4):165-16617630620PubMedGoogle ScholarCrossref
Harvitt DM, Bonanno JA. Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia.  Optom Vis Sci. 1999;76(10):712-71910524787PubMedGoogle ScholarCrossref
Dumbleton K, Keir N, Moezzi A, Feng Y, Jones L, Fonn D. Objective and subjective responses in patients refitted to daily-wear silicone hydrogel contact lenses.  Optom Vis Sci. 2006;83(10):758-76817041322PubMedGoogle ScholarCrossref
Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients.  J Glaucoma. 2008;17(5):350-35518703943PubMedGoogle ScholarCrossref
Young G, Coleman S. Poorly fitting soft lenses affect ocular integrity.  CLAO J. 2001;27(2):68-7411352451PubMedGoogle Scholar
Wilensky JT, Gieser DK, Dietsche ML, Mori MT, Zeimer R. Individual variability in the diurnal intraocular pressure curve.  Ophthalmology. 1993;100(6):940-9448510909PubMedGoogle Scholar
Realini T, Weinreb RN, Wisniewski S. Short-term repeatability of diurnal intraocular pressure patterns in glaucomatous individuals.  Ophthalmology. 2011;118(1):47-5120709404PubMedGoogle ScholarCrossref
Realini T, Weinreb RN, Wisniewski SR. Diurnal intraocular pressure patterns are not repeatable in the short term in healthy individuals.  Ophthalmology. 2010;117(9):1700-170420557945PubMedGoogle ScholarCrossref
Mansouri K, Weinreb RN, Liu JH. Effects of aging on 24-hour intraocular pressure measurements in sitting and supine body positions.  Invest Ophthalmol Vis Sci. 2012;53(1):112-11622159010PubMedGoogle ScholarCrossref
Lee YR, Kook MS, Joe SG,  et al.  Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma.  Invest Ophthalmol Vis Sci. 2012;53(2):881-88722266515PubMedGoogle ScholarCrossref
Renard E, Palombi K, Gronfier C,  et al.  Twenty-four hour (Nyctohemeral) rhythm of intraocular pressure and ocular perfusion pressure in normal-tension glaucoma.  Invest Ophthalmol Vis Sci. 2010;51(2):882-88919684006PubMedGoogle ScholarCrossref
Kida T, Liu JH, Weinreb RN. Effect of 24-hour corneal biomechanical changes on intraocular pressure measurement.  Invest Ophthalmol Vis Sci. 2006;47(10):4422-442617003435PubMedGoogle ScholarCrossref
Kida T, Liu JH, Weinreb RN. Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure.  Am J Ophthalmol. 2008;146(4):567-57218614134PubMedGoogle ScholarCrossref
Clinical Sciences
Dec 2012

Continuous 24-Hour Monitoring of Intraocular Pressure Patterns With a Contact Lens Sensor: Safety, Tolerability, and Reproducibility in Patients With Glaucoma

Author Affiliations

Author Affiliations: Hamilton Glaucoma Center and Shiley Eye Center, Department of Ophthalmology, University of California at San Diego, La Jolla.

Arch Ophthalmol. 2012;130(12):1534-1539. doi:10.1001/archophthalmol.2012.2280

Objective To examine the safety, tolerability, and reproducibility of intraocular pressure (IOP) patterns during repeated continuous 24-hour IOP monitoring with a contact lens sensor.

Methods Forty patients suspected of having glaucoma (n = 21) or with established glaucoma (n = 19) were studied. Patients participated in two 24-hour IOP monitoring sessions (S1 and S2) at a 1-week interval (SENSIMED Triggerfish CLS; Sensimed AG). Patients pursued daily activities, and sleep behavior was not controlled. Incidence of adverse events and tolerability (visual analog scale score) were assessed. Reproducibility of signal patterns was assessed using Pearson correlations.

Results The mean (SD) age of the patients was 55.5 (15.7) years, and 60% were male. Main adverse events were blurred vision (82%), conjunctival hyperemia (80%), and superficial punctate keratitis (15%). The mean (SD) visual analog scale score was 27.2 (18.5) mm in S1 and 23.8 (18.7) mm in S2 (P = .22). Overall correlation between the 2 sessions was 0.59 (0.51 for no glaucoma medication and 0.63 for glaucoma medication) (P = .12). Mean (SD) positive linear slopes of the sensor signal from wake to 2 hours into sleep were detected in both sessions for the no glaucoma medication group (S1: 0.40 [0.34], P < .001; S2: 0.33 [0.30], P < .01) but not for the glaucoma medication group (S1: 0.24 [0.60], P = .06; S2: 0.40 [0.40], P < .001).

Conclusions Repeated use of the contact lens sensor demonstrated good safety and tolerability. The recorded IOP patterns showed fair to good reproducibility, suggesting that data from continuous 24-hour IOP monitoring may be useful in the management of patients with glaucoma.

Trial Registration Identifier: NCT01319617