Rate of Visual Field Progression in Eyes With Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Gordon MO, Kass MA. The Ocular Hypertension Treatment Study: design and baseline description of the participants.  Arch Ophthalmol. 1999;117(5):573-58310326953PubMedGoogle ScholarCrossref
2.
Kass MA, Heuer DK, Higginbotham EJ,  et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.  Arch Ophthalmol. 2002;120(6):701-713, discussion 829-83012049574PubMedGoogle ScholarCrossref
3.
Gordon MO, Torri V, Miglior S,  et al; Ocular Hypertension Treatment Study Group; European Glaucoma Prevention Study Group.  Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension.  Ophthalmology. 2007;114(1):10-1917095090PubMedGoogle ScholarCrossref
4.
Budenz DL, Anderson DR, Feuer WJ,  et al; Ocular Hypertension Treatment Study Group.  Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study.  Ophthalmology. 2006;113(12):2137-214316996592PubMedGoogle ScholarCrossref
5.
Caprioli J. The importance of rates in glaucoma.  Am J Ophthalmol. 2008;145(2):191-19218222187PubMedGoogle ScholarCrossref
6.
Bengtsson B, Heijl A. A visual field index for calculation of glaucoma rate of progression.  Am J Ophthalmol. 2008;145(2):343-35318078852PubMedGoogle ScholarCrossref
7.
Chauhan BC, Garway-Heath DF, Goñi FJ,  et al.  Practical recommendations for measuring rates of visual field change in glaucoma.  Br J Ophthalmol. 2008;92(4):569-57318211935PubMedGoogle ScholarCrossref
8.
Alencar LM, Zangwill LM, Weinreb RN,  et al.  A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma.  Invest Ophthalmol Vis Sci. 2010;51(7):3531-353920207973PubMedGoogle ScholarCrossref
9.
Leung CK, Cheung CY, Weinreb RN,  et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis.  Invest Ophthalmol Vis Sci. 2010;51(1):217-22219684001PubMedGoogle ScholarCrossref
10.
Chauhan BC, Mikelberg FS, Artes PH,  et al; Canadian Glaucoma Study Group.  Canadian Glaucoma Study, 3: impact of risk factors and intraocular pressure reduction on the rates of visual field change.  Arch Ophthalmol. 2010;128(10):1249-125520696979PubMedGoogle ScholarCrossref
11.
Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma.  Ophthalmology. 2009;116(11):2110-211819500850PubMedGoogle ScholarCrossref
12.
Airaksinen PJ. Are optic disc haemorrhages a common finding in all glaucoma patients?  Acta Ophthalmol (Copenh). 1984;62(2):193-1966720284PubMedGoogle ScholarCrossref
13.
Uhler TA, Piltz-Seymour J. Optic disc hemorrhages in glaucoma and ocular hypertension: implications and recommendations.  Curr Opin Ophthalmol. 2008;19(2):89-9418301280PubMedGoogle ScholarCrossref
14.
Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes.  Biometrics. 1986;42(1):121-1303719049PubMedGoogle ScholarCrossref
15.
Ocular Hypertension Treatment Study Group and the European Glaucoma Prevention Study Group.  The accuracy and clinical application of predictive models for primary open-angle glaucoma in ocular hypertensive individuals.  Ophthalmology. 2008;115(11):2030-203618801578PubMedGoogle ScholarCrossref
16.
Drance S, Anderson DR, Schulzer M.Collaborative Normal-Tension Glaucoma Study Group.  Risk factors for progression of visual field abnormalities in normal-tension glaucoma.  Am J Ophthalmol. 2001;131(6):699-70811384564PubMedGoogle ScholarCrossref
17.
Bengtsson B, Leske MC, Yang Z, Heijl A.EMGT Group.  Disc hemorrhages and treatment in the Early Manifest Glaucoma Trial.  Ophthalmology. 2008;115(11):2044-204818692244PubMedGoogle ScholarCrossref
18.
Kass MA, Gordon MO, Gao F,  et al; Ocular Hypertension Treatment Study Group.  Delaying treatment of ocular hypertension: the Ocular Hypertension Treatment Study.  Arch Ophthalmol. 2010;128(3):276-28720212196PubMedGoogle ScholarCrossref
19.
Medeiros FA, Alencar LM, Sample PA, Zangwill LM, Susanna R Jr, Weinreb RN. The relationship between intraocular pressure reduction and rates of progressive visual field loss in eyes with optic disc hemorrhage.  Ophthalmology. 2010;117(11):2061-206620541265PubMedGoogle ScholarCrossref
20.
Miyake T, Sawada A, Yamamoto T, Miyake K, Sugiyama K, Kitazawa Y. Incidence of disc hemorrhages in open-angle glaucoma before and after trabeculectomy.  J Glaucoma. 2006;15(2):164-17116633231PubMedGoogle ScholarCrossref
21.
de Beaufort HC, De Moraes CG, Teng CC,  et al.  Recurrent disc hemorrhage does not increase the rate of visual field progression.  Graefes Arch Clin Exp Ophthalmol. 2010;248(6):839-84420182885PubMedGoogle ScholarCrossref
22.
Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage.  Arch Ophthalmol. 2009;127(10):1250-125619822839PubMedGoogle ScholarCrossref
23.
Henson DB, Artes PH, Chauhan BC. Diffuse loss of sensitivity in early glaucoma.  Invest Ophthalmol Vis Sci. 1999;40(13):3147-315110586936PubMedGoogle Scholar
24.
Gardiner SK, Demirel S, Johnson CA. Perimetric indices as predictors of future glaucomatous functional change.  Optom Vis Sci. 2011;88(1):56-6220966804PubMedGoogle ScholarCrossref
25.
Manassakorn A, Nouri-Mahdavi K, Koucheki B, Law SK, Caprioli J. Pointwise linear regression analysis for detection of visual field progression with absolute versus corrected threshold sensitivities.  Invest Ophthalmol Vis Sci. 2006;47(7):2896-290316799031PubMedGoogle ScholarCrossref
Clinical Sciences
Journal Club, ONLINE FIRST
Dec 2012

Rate of Visual Field Progression in Eyes With Optic Disc Hemorrhages in the Ocular Hypertension Treatment Study

Journal Club PowerPoint Slide Download
Author Affiliations

Author Affiliations: Einhorn Clinical Research Center, New York Eye and Ear Infirmary (Drs De Moraes, Liebmann, and Ritch), and Department of Ophthalmology, New York University School of Medicine (Drs De Moraes and Liebmann), New York, and Department of Ophthalmology, New York Medical College, Valhalla (Dr Ritch); Devers Eye Institute, Legacy Health, Portland, Oregon (Drs Demirel, Gardiner, and Cioffi); and Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, Missouri (Drs Gordon and Kass).

Group Information: The Ocular Hypertension Treatment Study Group members are listed athttp://ohts.wustl.edu/investigators.html.

Arch Ophthalmol. 2012;130(12):1541-1546. doi:10.1001/archophthalmol.2012.2324
Abstract

Objective To compare rates of visual field (VF) change in ocular hypertensive eyes with and without optic disc hemorrhage (DH).

Methods Ocular Hypertension Treatment Study subjects (minimum 10 reliable VF tests, followed up ≥5 years) were included. Trend analyses of VF sequences over time of DH and non-DH eyes were assessed by regression of mean deviation (MDR) and pointwise linear regression (PLR). The main outcome measures were rates of VF change in DH and non-DH eyes.

Results Two thousand six hundred seven eyes (1378 participants) were included. The mean (SD) number of VF tests per eye was 23.7 (4.9) spanning a mean (SD) of 12.2 (2.0) years. At least 1 DH was detected in 187 eyes (7.2%), of which 52 eyes had recurrent DH. Mean deviation rate of change was significantly worse in DH compared with non-DH eyes (mean [SD], −0.17 [0.27] vs −0.07 [0.19] dB/y; P < .01). Significant PLR progression occurred more frequently in eyes with DH (odds ratio, 3.6; P < .01), which increased when 2 or more DHs were present (odds ratio, 4.2; P = .01). Eyes initially randomized to treatment were less likely to have a DH during follow-up.

Conclusions Eyes with DH had more rapid VF deterioration when assessed by global (MDR) or local (PLR) trend analysis than eyes without DH. Eyes with recurrent DH had similar rates of global VF change (MDR) when compared with eyes with a single DH but reached criteria for rapid PLR change more often. Intraocular pressure reduction in ocular hypertension reduces the risk of developing a DH. Ocular hypertensive eyes with DH should be monitored closely and may need more aggressive therapy.

Trial Registration clinicaltrials.gov Identifier: NCT00000125

×