Optical Coherence Tomographic Imaging of Sub-Retinal Pigment Epithelium Lipid | Cardiology | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Spaide RF. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration.  Am J Ophthalmol. 2009;147(4):644-65219152869PubMedGoogle ScholarCrossref
Ahlers C, Michels S, Beckendorf A, Birngruber R, Schmidt-Erfurth U. Three-dimensional imaging of pigment epithelial detachment in age-related macular degeneration using optical coherence tomography, retinal thickness analysis and topographic angiography.  Graefes Arch Clin Exp Ophthalmol. 2006;244(10):1233-123916977431PubMedGoogle ScholarCrossref
Coscas F, Coscas G, Souied E, Tick S, Soubrane G. Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration.  Am J Ophthalmol. 2007;144(4):592-59917698019PubMedGoogle ScholarCrossref
Sato T, Iida T, Hagimura N, Kishi S. Correlation of optical coherence tomography with angiography in retinal pigment epithelial detachment associated with age-related macular degeneration.  Retina. 2004;24(6):910-91415579989PubMedGoogle ScholarCrossref
Spaide RF, Curcio CA. Drusen characterization with multimodal imaging.  Retina. 2010;30(9):1441-145420924263PubMedGoogle ScholarCrossref
Yasuno Y, Miura M, Kawana K,  et al.  Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography.  Invest Ophthalmol Vis Sci. 2009;50(1):405-41318676629PubMedGoogle ScholarCrossref
Hartnett ME, Weiter JJ, Garsd A, Jalkh AE. Classification of retinal pigment epithelial detachments associated with drusen.  Graefes Arch Clin Exp Ophthalmol. 1992;230(1):11-191547961PubMedGoogle ScholarCrossref
Casswell AG, Kohen D, Bird AC. Retinal pigment epithelial detachments in the elderly: classification and outcome.  Br J Ophthalmol. 1985;69(6):397-4032408659PubMedGoogle ScholarCrossref
Bressler NM, Silva JC, Bressler SB, Fine SL, Green WR. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration: 1994.  Retina. 2005;25(5):(suppl)  130-14216049360PubMedGoogle ScholarCrossref
Green WR, Enger C. Age-related macular degeneration histopathologic studies: the 1992 Lorenz E. Zimmerman lecture: 1992.  Retina. 2005;25(5):(suppl)  1519-153516049370PubMedGoogle ScholarCrossref
Klein ML, Wilson DJ. Clinicopathologic correlation of choroidal and retinal neovascular lesions in age-related macular degeneration.  Am J Ophthalmol. 2011;151(1):161-16920970772PubMedGoogle ScholarCrossref
Coscas G. Optical Coherence Tomography in Age-Related Macular DegenerationHeidelberg, Germany: Springer Medizin Verlag; 2009
Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C.Diabetic Retinopathy Research Group Vienna.  Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema.  Ophthalmology. 2009;116(5):914-92019410950PubMedGoogle ScholarCrossref
Nowilaty SR, Al-Shamsi HN, Al-Khars W. Idiopathic juxtafoveolar retinal telangiectasis: a current review.  Middle East Afr J Ophthalmol. 2010;17(3):224-24120844678PubMedGoogle ScholarCrossref
Gragoudas ES, Li W, Lane AM, Munzenrider J, Egan KM. Risk factors for radiation maculopathy and papillopathy after intraocular irradiation.  Ophthalmology. 1999;106(8):1571-1577, discussion 1577-157810442906PubMedGoogle ScholarCrossref
Othman IS, Moussa M, Bouhaimed M. Management of lipid exudates in Coats disease by adjuvant intravitreal triamcinolone: effects and complications.  Br J Ophthalmol. 2010;94(5):606-61019955197PubMedGoogle ScholarCrossref
Fernandes BF, Odashiro AN, Maloney S, Zajdenweber ME, Lopes AG, Burnier MN Jr. Clinical-histopathological correlation in a case of Coats' disease.  Diagn Pathol. 2006;1:2416942617PubMedGoogle ScholarCrossref
Ogino K, Murakami T, Tsujikawa A,  et al.  Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion.  Retina. 2012;32(1):77-8521866075PubMedGoogle ScholarCrossref
Ota M, Nishijima K, Sakamoto A,  et al.  Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment.  Ophthalmology. 2010;117(10):1996-200220723993PubMedGoogle ScholarCrossref
Lima LH, Freund KB, Klancnik JM Jr, Spaide RF. Intraretinal crystalline deposits in neovascular age-related macular degeneration.  Retina. 2010;30(4):542-54720084051PubMedGoogle ScholarCrossref
Deák GG, Bolz M, Kriechbaum K,  et al; Diabetic Retinopathy Research Group Vienna.  Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography.  Ophthalmology. 2010;117(4):773-77920079541PubMedGoogle ScholarCrossref
Cusick M, Chew EY, Chan CC, Kruth HS, Murphy RP, Ferris FL III. Histopathology and regression of retinal hard exudates in diabetic retinopathy after reduction of elevated serum lipid levels.  Ophthalmology. 2003;110(11):2126-213314597519PubMedGoogle ScholarCrossref
Otani T, Kishi S. Tomographic findings of foveal hard exudates in diabetic macular edema.  Am J Ophthalmol. 2001;131(1):50-5411162979PubMedGoogle ScholarCrossref
Burns RP, Feeney-Burns L. Clinico-morphologic correlations of drusen of Bruch's membrane.  Trans Am Ophthalmol Soc. 1980;78:206-2256167054PubMedGoogle Scholar
Sarks JP, Sarks SH, Killingsworth MC. Evolution of geographic atrophy of the retinal pigment epithelium.  Eye (Lond). 1988;2(pt 5):552-5772476333PubMedGoogle ScholarCrossref
Cukras C, Agrón E, Klein ML,  et al; Age-Related Eye Disease Study Research Group.  Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: Age-Related Eye Disease Study report no 28.  Ophthalmology. 2010;117(3):489-49920079925PubMedGoogle ScholarCrossref
Sarraf D, Gin T, Yu F, Brannon A, Owens SL, Bird AC. Long-term drusen study.  Retina. 1999;19(6):513-51910606451PubMedGoogle ScholarCrossref
Holz FG, Spaide RF. Medical Retina: Focus on Retinal Imaging. Heidelberg, Germany: Springer Medizin Verlag; 2010
Grossniklaus HE, Miskala PH, Green WR,  et al.  Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no 7.  Arch Ophthalmol. 2005;123(7):914-92116009831PubMedGoogle ScholarCrossref
Lafaut BA, Bartz-Schmidt KU, Vanden Broecke C, Aisenbrey S, De Laey JJ, Heimann K. Clinicopathological correlation in exudative age related macular degeneration: histological differentiation between classic and occult choroidal neovascularisation.  Br J Ophthalmol. 2000;84(3):239-24310684831PubMedGoogle ScholarCrossref
Theelen T, Berendschot TT, Hoyng CB, Boon CJ, Klevering BJ. Near-infrared reflectance imaging of neovascular age-related macular degeneration.  Graefes Arch Clin Exp Ophthalmol. 2009;247(12):1625-163319641931PubMedGoogle ScholarCrossref
Knupp C, Amin SZ, Munro PM, Luthert PJ, Squire JM. Collagen VI assemblies in age-related macular degeneration.  J Struct Biol. 2002;139(3):181-18912457848PubMedGoogle ScholarCrossref
Malek G, Li CM, Guidry C, Medeiros NE, Curcio CA. Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy.  Am J Pathol. 2003;162(2):413-42512547700PubMedGoogle ScholarCrossref
Curcio CA, Millican CL, Bailey T, Kruth HS. Accumulation of cholesterol with age in human Bruch's membrane.  Invest Ophthalmol Vis Sci. 2001;42(1):265-27411133878PubMedGoogle Scholar
Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS. Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy.  Exp Eye Res. 2005;81(6):731-74116005869PubMedGoogle ScholarCrossref
Curcio CA, Johnson M, Huang JD, Rudolf M. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration.  J Lipid Res. 2010;51(3):451-46719797256PubMedGoogle ScholarCrossref
Clinical Sciences
Dec 2012

Optical Coherence Tomographic Imaging of Sub-Retinal Pigment Epithelium Lipid

Author Affiliations

Author Affiliations: Vitreous Retina Macula Consultants of New York, New York (Drs Mukkamala, Fung, and Freund), LuEsther T. Mertz Retinal Research Center, New York (Drs Mukkamala, Fung, and Freund), Department of Ophthalmology, New York University, New York (Drs Mukkamala and Freund), Edward S. Harkness Eye Institute, Columbia University, New York (Drs Mukkamala and Freund), New York; Centro Brasileiro de Ciencias Visuais, Belo Horizonte, Minas Gerais, Brazil (Dr Costa); Retinal Disorders and Ophthalmic Genetics Division, Jules Stein Eye Institute, University of California, Los Angeles (Dr Sarraf), Greater Los Angeles VA Healthcare Center (Dr Sarraf), Los Angeles, California; and Department of Ophthalmology, University and Polytechnic Hospital, La Fe, Valencia, Spain (Dr Gallego-Pinazo).

Arch Ophthalmol. 2012;130(12):1547-1553. doi:10.1001/archophthalmol.2012.2491

Objective To describe an optical coherence tomographic finding of layered hyperreflective bands beneath the retinal pigment epithelium (RPE), the so-called onion sign believed to represent lipid within a vascularized pigment epithelial detachment.

Methods This retrospective observational case series involved reviewing clinical histories of patients with the onion sign. Imaging studies analyzed included spectral-domain optical coherence tomography, color and red-free photographs, near infrared reflectance, fundus autofluorescence, and blue-light fundus autofluorescence.

Results A total of 22 eyes of 20 patients with sub-RPE hyperreflective bands were identified. There were 15 women and 5 men with a mean patient age of 76 years (range, 60-92 years). Snellen best-corrected visual acuities ranged from 20/25 to counting fingers, with a median of 20/80. Two patients had bilateral involvement, and 3 of 17 eyes had multifocal onion signs in the same eye. All eyes had neovascular age-related macular degeneration, with type 1 (sub-RPE) neovascularization. In all patients, the onion sign correlated with areas of yellow-gray exudates seen clinically that appeared bright on red-free and near infrared reflectance imaging. No specific fundus autofluorescence or blue-light fundus autofluorescence pattern was identified.

Conclusions The onion sign refers to layered hyperreflective bands in the sub-RPE space usually associated with chronic exudation from type 1 neovascularization in patients with age-related macular degeneration. With an associated bright near infrared reflectance, these bands may correspond to lipid, collagen, or fibrin. Because the onion sign colocalizes to areas of exudation that are known to consist of lipoprotein, we propose that this finding may represent layers of precipitated lipid in the sub-RPE space. To our knowledge, this is the first report of lipid detected in the sub-RPE space on clinical examination.