Clinical and Ocular Histopathological Findings in a Patient With Normal-Pressure Glaucoma | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.226.234.102. Please contact the publisher to request reinstatement.
1.
Drance  SMShulzer  MDouglas  GRSweeney  VP Use of discriminant analysis, II: identification of persons with glaucomatous visual field defects.  Arch Ophthalmol. 1978;9657- 73Google ScholarCrossref
2.
Hart  WMNYablonski  MKass  MABecker  B Multivariate analysis of the risk of glaucomatous visual field loss.  Arch Ophthalmol. 1979;971455- 1458Google ScholarCrossref
3.
Sommer  A Glaucoma: facts and fancies.  Eye. 1996;10295- 301Doyne Lecture.Google ScholarCrossref
4.
Quigley  HAGreen  WR The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes.  Ophthalmology. 1979;861803- 1827Google ScholarCrossref
5.
Quigley  HAHohmam  RMAddicks  EMMassof  RWGreen  WR Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma.  Am J Ophthalmol. 1983;95673- 691Google Scholar
6.
Quigley  HAAddicks  EMGreen  RManumenee  AE Optic nerve damage in human glaucoma, II: the site of injury and susceptibility to damage.  Arch Ophthalmol. 1981;99635- 649Google ScholarCrossref
7.
Kerrigan  LAZack  DJQuigley  HASmith  SCPease  ME TUNEL-positive ganglion cells in human primary open-angle glaucoma.  Arch Ophthalmol. 1997;1151031- 1035Google ScholarCrossref
8.
Quigley  HANickells  RWKerrigan  LAPease  METhibault  DJZack  DJ Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis.  Invest Ophthalmol Vis Sci. 1995;36774- 786Google Scholar
9.
Garcia-Valenzuela  EShareef  SWalsh  JSharma  SC Programmed cell death of retinal ganglion cells during experimental glaucoma.  Exp Eye Res. 1995;6133- 44Google ScholarCrossref
10.
Gavrieli  YSherman  YBen-Sasson  SA Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.  J Cell Biol. 1992;119493- 501Google ScholarCrossref
11.
Jonas  JBNguyen  XNGusek  GCNauman  GOH Parapapillary chorioretinal atrophy in normal and glaucoma eyes, I: morphometric data.  Invest Ophthalmol Vis Sci. 1989;30908- 918Google Scholar
12.
Wax  MBTezel  GSaito  I  et al.  Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal pressure glaucoma.  Am J Ophthalmol. 1998;125145- 157Google ScholarCrossref
13.
Iwata  K Primary open angle glaucoma and low tension glaucoma: pathogenesis and mechanism of optic nerve damage.  Nippon Ganka Gakkai Zasshi. 1992;961501- 1531Google Scholar
14.
Tezel  GKass  MAKolker  AEWax  MB Comparative analysis of optic disc parameters in normal pressure glaucoma, primary open-angle glaucoma and ocular hypertension.  Ophthalmology. 1996;1032105- 2113Google ScholarCrossref
15.
Morrison  JCDorman-Pease  MEDunkelberger  GRQuigley  HA Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma.  Arch Ophthalmol. 1990;1081020- 1024Google ScholarCrossref
16.
Hernandez  MRAndrzejewska  WMNeufeld  AH Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma.  Am J Ophthalmol. 1990;109180- 188Google Scholar
17.
Quigley  HABrown  ADorman-Pease  ME Alterations in elastin of the optic nerve head in human and experimental glaucoma.  Br J Ophthalmol. 1991;75552- 557Google ScholarCrossref
18.
Hernandez  MR Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa: changes in elastic fibers in primary open-angle glaucoma.  Invest Ophthalmol Vis Sci. 1992;332891- 2903Google Scholar
19.
Schnabel  J Das Glaucomatose Sehnervenleiden.  Arch Augenheilkd. 1892;24273- 292Google Scholar
20.
Zimmerman  LE Pathology of glaucomatous cupping of optic nerve head. Armaly  MFBecker  BHaas  JS  et al. eds. Symposium on Glaucoma Transactions of the New Orleans Academy of Ophthalmology. St Louis, Mo Mosby–Year Book Inc1967;192- 207Google Scholar
21.
Kalvin  NHHamasaki  DIGass  JDM Experimental glaucoma in monkeys.  Arch Ophthalmol. 1966;7682- 103Google ScholarCrossref
22.
Lampert  PWVogel  MHZimmerman  LE Pathology of the optic nerve in experimental acute glaucoma: electron microscopic studies.  Invest Ophthalmol Vis Sci. 1968;7199- 213Google Scholar
23.
Garcia-Valenzuela  EGorczyca  WDarzynkiewicz  ZSharma  SC Apoptosis in adult retinal ganglion cells after axotomy.  J Neurobiol. 1994;25431- 438Google ScholarCrossref
24.
Levin  LALouhab  A Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy.  Arch Ophthalmol. 1996;114488- 491Google ScholarCrossref
25.
Kohner  EMShilling  JSHamilton  AM The role of avascular retina in new vessel formation.  Metab Ophthalmol. 1976;115- 23Google Scholar
26.
Spencer  WHHoyt  WF A fatal case of giant-cell arteritis with ocular involvement.  Arch Ophthalmol. 1960;64862- 867Google ScholarCrossref
27.
Hinzpeter  ENNaumann  G Ischemic papilledema in giant-cell arteritis.  Arch Ophthalmol. 1976;94624- 628Google ScholarCrossref
28.
Hayreh  SS Pathogenesis of cupping of the optic disc.  Br J Ophthalmol. 1974;58863- 876Google ScholarCrossref
29.
Sebag  JThomas  JVEpstein  DLGrant  WM Optic disc cupping in arteritic anterior ischemic optic neuropathy resembles glaucomatous cupping.  Ophthalmology. 1986;93357- 361Google ScholarCrossref
30.
Wax  MBBarrett  DAPestronk  A Increased incidence of paraproteinemia and autoantibodies in patients with normal-pressure glaucoma.  Am J Ophthalmol. 1994;117561- 568Google Scholar
31.
Romano  CBarrett  DALi  ZPestronk  AWax  MB Anti-rhodopsin antibodies in sera from patients with normal pressure glaucoma.  Invest Ophthalmol Vis Sci. 1995;361968- 1975Google Scholar
32.
Birnbaum  G Stress proteins: their role in the normal central nervous system and in disease states, especially in multiple sclerosis.  Springer Semin Immunopathol. 1995;17107- 118Google ScholarCrossref
33.
Rordorf  GKoroshetz  WJBonventre  JV Heat shock protects cultured neurons from glutamate toxicity.  Neuron. 1991;71043- 1051Google ScholarCrossref
34.
Lowenstein  DHChan  PHMiles  MF The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity.  Neuron. 1991;71053- 1060Google ScholarCrossref
35.
Young  RAElliott  TJ Stress proteins, infection, and immune surveillance.  Cell. 1989;595- 8Google ScholarCrossref
36.
Young  DB Chaperonins and the immune response.  Cell Biol. 1990;127- 35Google Scholar
37.
Lamb  JRBal  VMendez-Samperio  P  et al.  Stress proteins may provide a link between the immune response to infection and autoimmunity.  Int Immunol. 1989;1191- 196Google ScholarCrossref
38.
Young  DB Heat-shock proteins: immunity and autoimmunity.  Curr Opin Immunol. 1992;4396- 400Google ScholarCrossref
39.
Caprioli  JKitano  SMorgan  JE Hyperthermia and hypoxia increase tolerance of retinal ganglion cells to anoxia and excititoxicity.  Invest Ophthalmol Vis Sci. 1996;372376- 2381Google Scholar
40.
Kyle  RA Monoclonal proteins in neuropathy.  Neurol Clin. 1992;10713- 734Google Scholar
41.
Yeung  KBThomas  PKKing  RHM  et al.  The clinical spectrum of peripheral neuropathies associated with benign monoclonal IgM, IgG and IgA paraproteinaemia.  J Neurol. 1991;238383- 391Google ScholarCrossref
42.
Pestronk  A Motor neuropathies, motor neuron disorders, and antiglycolipid antibodies.  Muscle Nerve. 1991;14927- 936Google ScholarCrossref
43.
Kelly  JJKyle  RAO'Brien  PCDyck  PJ Prevalence of monoclonal protein in peripheral neuropathy.  Neurology. 1981;311480- 1483Google ScholarCrossref
44.
Forssman  OBjorkman  GHollender  AEnglund  N-I IgM-producing lymphocytes in peripheral nerve in a patient with benign monoclonal gammopathy.  Scand J Haematol. 1973;11332- 335Google ScholarCrossref
45.
Osby  ENoring  LHast  RKjellin  KGKnutsson  ESiden  A Benign monoclonal gammopathy and peripheral neuropathy.  Br J Haematol. 1982;51531- 539Google ScholarCrossref
46.
Grunwald  GBKornguth  SETowfighi  J  et al.  Autoimmune basis for visual paraneoplastic syndrome in patients with small cell lung carcinoma: retinal immune deposits and ablation of retinal ganglion cells.  Cancer. 1987;60780- 786Google ScholarCrossref
47.
Patrick  JLindstrom  J Autoimmune responses to acetylcholine receptor.  Nature. 1973;180871- 872Google Scholar
48.
Solimena  MDeCamilli  DP Autoimmunity to glutamic acid decarboxylase (GAD) in stiff-man syndrome and insulin-dependent diabetes mellitus.  Trends Neurosci. 1991;14452- 454Google ScholarCrossref
49.
Waxman  SG Sodium channel blockage by antibodies: a new mechanism of neurological disease.  Ann Neurol. 1995;37421- 422Google ScholarCrossref
50.
Adamus  GMachnicki  MSeigel  GM Apoptotic retinal cell death induced by antirecoverin autoantibodies of cancer-associated retinopathy.  Invest Ophthalmol Vis Sci. 1997;38283- 291Google Scholar
Clinical Sciences
August 1998

Clinical and Ocular Histopathological Findings in a Patient With Normal-Pressure Glaucoma

Author Affiliations

From the Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, Mo (Drs Wax and Tezel), and the University of Illinois, Chicago (Dr Edward). The authors have no proprietary interest in any of the materials used in this study.

Arch Ophthalmol. 1998;116(8):993-1001. doi:10.1001/archopht.116.8.993
Abstract

Objective  To study the histopathological changes of eyes from a patient with normal-pressure glaucoma whose clinical and laboratory findings were well documented.

Methods  Postmortem histopathological findings in a patient with normal-pressure glaucoma who had monoclonal gammopathy and serum immunoreactivity to retinal proteins were examined in comparison with those of an age-matched control subject. Clinicopathological correlations to laboratory findings were examined.

Results  Clinical and histopathological findings of the patient, including cavernous degeneration of optic nerve and characteristic optic nerve cupping, were similar to those in patients with glaucoma who had high intraocular pressure. In addition, we found immunoglobulin G and immonuglobulin A deposition in the ganglion cells, inner and outer nuclear layers of the retina, and evidence of apoptotic retinal cell death using terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling technique.

Conclusions  Serum antibodies to retinal proteins and retinal immunoglobulin deposition constitute novel findings in a patient with normal-pressure glaucoma and may contribute to better understanding of the mechanisms underlying glaucomatous optic neuropathy in this disorder.

×