Foveal Dysfunction and Central Visual Field Loss in Glaucoma | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Vaegan  Not AvailableGraham  SLGoldberg  IBuckland  LHollows  FC Flash and pattern electroretinogram changes with optic atrophy and glaucoma.  Exp Eye Res. 1995;60697- 706Google ScholarCrossref
2.
Fazio  DTHeckenlively  JRMartin  DAChristensen  RE The electroretinogram in advanced open-angle glaucoma.  Doc Ophthalmol. 1986;6345- 54Google ScholarCrossref
3.
Odom  JVFeghali  JGJin  JCWeinstein  GW Visual function deficits in glaucoma. Electroretinogram pattern and luminance nonlinearities.  Arch Ophthalmol. 1990;108222- 227Google ScholarCrossref
4.
Holopigian  KSeiple  WMayron  CKoty  RLorenzo  M Electrophysiological and psychophysical flicker sensitivity in patients with primary open angle glaucoma and ocular hypertension.  Invest Ophthalmol Vis Sci. 1990;311863- 1868Google Scholar
5.
Fazio  PKrupin  TFeitl  MEWerner  EBCarre  DA Optic disc topography in patients with low-tension and primary open angle glaucoma.  Arch Ophthalmol. 1990;108705- 708Google ScholarCrossref
6.
Lachenmayr  BJDrance  SM Central function and visual field damage in glaucoma.  Int Ophthalmol. 1992;16203- 209Google ScholarCrossref
7.
Marx  MSBodis-Wollner  ILustgarten  JSPodos  SM Electrophysiological evidence that early glaucoma affects foveal vision.  Doc Ophthalmol. 1987;67281- 301Google ScholarCrossref
8.
Eisner  ASamples  JRCampbell  HMCioffi  GA Foveal adaptation abnormalities in early glaucoma.  J Opt Soc Am A. 1995;122318- 2328Google ScholarCrossref
9.
Sandberg  MAJacobson  SGBerson  EL Foveal cone electroretinograms in retinitis pigmentosa and juvenile macular degeneration.  Am J Ophthalmol. 1979;88702- 707Google Scholar
10.
Fish  GEBirch  DGFuller  DGStraach  R A comparison of visual function tests in eyes with maculopathy.  Ophthalmology. 1986;931177- 1182Google ScholarCrossref
11.
Jacobson  SGSandberg  MAEffron  MHBerson  EL Foveal cone electroretinograms in strabismic amblyopia: comparison with juvenile macular degeneration, macular scars, and optic atrophy.  Trans Ophthalmol Soc U K. 1979;99353- 356Google Scholar
12.
Vaegan  Not AvailableBillson  FA Macular electroretinograms and contrast sensitivity as sensitive detectors of early maculopathy.  Doc Ophthalmol. 1986;63399- 406Google Scholar
13.
Sandberg  MA Objective assessment of retinal function. Albert  DMJakobiec  FAeds. Principles and Practice of Ophthalmology Clinical Practice Vol 2 Philadelphia, Pa WB Saunders Co1994;1196- 1206Google Scholar
14.
Matthews  GPSandberg  MABerson  EL Foveal cone electroretinograms in patients with central visual loss of unexplained etiology.  Arch Ophthalmol. 1992;1101568- 1570Google ScholarCrossref
15.
Miyake  YHoriguchi  MTomita  N  et al.  Occult macular dystrophy.  Am J Ophthalmol. 1996;122644- 653Google Scholar
16.
Birch  DGFish  GE Focal cone electroretinograms: aging and macular disease.  Doc Ophthalmol. 1988;69211- 220Google ScholarCrossref
17.
Fish  GEBirch  DG The focal electroretinogram in the clinical assessment of macular disease.  Ophthalmology. 1989;96109- 114Google ScholarCrossref
18.
Weiner  AKini  MMGaudio  ARSandberg  MABerson  EL Hydroxychloroquine retinopathy.  Am J Ophthalmol. 1991;112528- 534Google Scholar
19.
Remulla  JFCGaudio  ARMiller  SSandberg  MA Foveal electroretinograms and choroidal perfusion characteristics in fellow eyes of patients with unilateral neovascular age-related macular degeneration.  Br J Ophthalmol. 1995;79558- 561Google ScholarCrossref
20.
Biersdorf  WR The foveal electroretinogram is normal in optic atrophy.  Doc Ophthalmol Proc Ser. 1984;40127- 135Google Scholar
21.
Weiner  AChristopoulos  VAGussler  CH  et al.  Foveal cone function in non-proliferative diabetic retinopathy and macular edema.  Invest Ophthalmol Vis Sci. 1997;381443- 1449Google Scholar
22.
Jonas  JBPapastathopoulos  K Ophthalmoscopic measurement of the optic disc.  Ophthalmology. 1995;1021102- 1106Google ScholarCrossref
23.
Weiner  ASandberg  MA Normal change in the foveal cone ERG with increasing duration of light exposure.  Invest Ophthalmol Vis Sci. 1991;322842- 2845Google Scholar
24.
Takatsuna  YAdachi-Usami  EKuroda  N Long-standing follow-up electroretinographic studies after surgical resection of optic nerve glioma.  Ophthalmologica. 1993;20694- 101Google ScholarCrossref
25.
Kendell  KRQuigley  HAKerrigan  LAPease  MEQuigley  EN Primary open-angle glaucoma is not associated with photoreceptor loss.  Invest Ophthalmol Vis Sci. 1995;36200- 205Google Scholar
26.
Bennett  SRAlward  WLFolberg  R An autosomal dominant form of low-tension glaucoma.  Am J Ophthalmol. 1989;108238- 244Google Scholar
27.
Brodie  SENaidu  EMGoncalves  J Combined amplitude and phase criteria for evaluation of macular electroretinograms.  Ophthalmology. 1992;99522- 530Google ScholarCrossref
28.
Juen  SKieselbach  GF Electrophysiological changes in juvenile diabetics without retinopathy.  Arch Ophthalmol. 1990;108372- 375Google ScholarCrossref
29.
Remulla  JFCGaudio  ARMiller  SSandberg  MA Foveal electroretinograms and choroidal perfusion characteristics in fellow eyes of patients with unilateral neovascular age-related macular degeneration.  Br J Ophthalmol. 1995;79558- 561Google ScholarCrossref
30.
Brunette  JRLafond  G Electroretinographic evaluation of diabetic retinopathy: sensitivity of amplitude and time of response.  Can J Ophthalmol. 1983;18285- 289Google Scholar
31.
Sandberg  MALee  HMatthews  GPGaudio  AR Relationship of oscillatory potential amplitude to a-wave slope over a range of flash luminances in normal subjects.  Invest Ophthalmol Vis Sci. 1991;321508- 1516Google Scholar
32.
Harris  ASergott  RCSpaeth  GLKatz  JLShoemaker  JAMartin  BJ Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma.  Am J Ophthalmol. 1994;118642- 649Google Scholar
33.
Harris  ASpaeth  GLSergott  RCKatz  LJCantor  LBMartin  BJ Retrobulbar arterial hemodynamic effects of betaxolol and timolol in normal-tension glaucoma.  Am J Ophthalmol. 1995;120168- 175Google Scholar
34.
Rankin  SJWalman  BEBuckley  ARDrance  SM Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma.  Am J Ophthalmol. 1995;119685- 693Google Scholar
35.
Yamazaki  YHayamizu  F Comparison of flow velocity of ophthalmic artery between primary open angle glaucoma and normal tension glaucoma.  Br J Ophthalmol. 1995;79732- 734Google ScholarCrossref
36.
Hayreh  SS Progress in the understanding of the vascular etiology of glaucoma.  Curr Opin Ophthalmol. 1994;526- 35Google ScholarCrossref
37.
Hayreh  SS In vivo choroidal circulation and its watershed zones.  Eye. 1990;4273- 289Google ScholarCrossref
38.
Dreyer  EBZurakowski  DSchumer  RAPodos  SMLipton  SA Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma.  Arch Ophthalmol. 1996;114299- 305Google ScholarCrossref
39.
Pillunat  LELang  GKHarris  A The visual response to increased ocular blood flow in normal pressure glaucoma.  Surv Ophthalmol. 1994;38(suppl)S139- S147Google ScholarCrossref
40.
Netland  PAChaturvedi  NDreyer  EB Calcium channel blockers in the management of low-tension and open-angle glaucoma.  Am J Ophthalmol. 1993;115608- 613Google Scholar
41.
Gaspar  AZFlammer  JHendrickson  P Influence of nifedipine on the visual fields of patients with optic-nerve-head diseases.  Eur J Ophthalmol. 1994;424- 28Google Scholar
42.
Gaspar  AZGasser  PFlammer  J The influence of magnesium on visual field and peripheral vasospasm in glaucoma.  Ophthalmologica. 1995;20911- 13Google ScholarCrossref
Clinical Sciences
September 1998

Foveal Dysfunction and Central Visual Field Loss in Glaucoma

Author Affiliations

From the Division of Ophthalmology, St Luke's Medical Center, Cleveland, Ohio (Drs Weiner, Ripkin, Patel, Kaufman, Kohn, and Weidenthal), and Northeast Ohio Eye Surgeons, Kent (Dr Ripkin). The authors have no proprietary interest in any equipment used in this study.

Arch Ophthalmol. 1998;116(9):1169-1174. doi:10.1001/archopht.116.9.1169
Abstract

Objective  To determine whether foveal function distal to the ganglion cell layer is an independent predictor of central visual field function in glaucoma.

Setting  University affiliated hospital and private practice.

Participants  Twenty-seven eyes (27 patients) with normal-pressure glaucoma, 10 eyes (10 patients) with primary open-angle glaucoma, and 47 eyes of 47 matched normal volunteers.

Intervention and Main Outcome Measures  Foveal cone electroretinogram (ERG) amplitude, relative optic cup to disc area and their relations to Humphrey full-threshold 30-2 visual field central 4-point mean total deviation (C4MTD) and pattern deviation (C4MPD).

Results  Foveal cone ERG amplitude was subnormal in 14 (37.8%) of the 37 glaucomatous eyes and lower in the glaucoma group compared with normal eyes (P<.01). The C4MTD and C4MPD were lower in glaucomatous eyes with subnormal amplitudes compared with those with normal amplitudes (P<.01 and P <.05, respectively). Amplitude was directly correlated with C4MTD (P<.01) and C4MPD (P<.01). Relative optic cup to disc area was inversely correlated with C4MTD (P<.001) and C4MPD (P<.001). Partial correlation analysis revealed that amplitude and relative optic cup to disc area were independent predictors of C4MTD and C4MPD.

Conclusion  Foveal function distal to the ganglion cell layer and optic disc cupping independently predict central visual field function in glaucoma.

×