Initial Stages of Posterior Vitreous Detachment in Healthy Eyes of Older Persons Evaluated by Optical Coherence Tomography | Ophthalmic Imaging | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Foos  RY Posterior vitreous detachment.  Trans Am Acad Ophthalmol Otolaryngol. 1972;76480- 497Google Scholar
Foos  RYWheeler  NC Vitreoretinal juncture: synchysis senilis and posterior vitreous detachment.  Ophthalmology. 1982;891502- 1512Google ScholarCrossref
Pischel  DK Detachment of the vitreous as seen with slit-lamp examination.  Trans Am Ophthalmol Soc. 1952;50329- 346Google Scholar
Lindner  B Acute posterior vitreous detachment and its retinal complications.  Acta Ophthalmol. 1966;87suppl1- 108Google Scholar
O'Malley  P The pattern of vitreous syneresis: a study of 800 autopsy eyes. Irvine  ARO'Malley  Ceds Advances in Vitreous Surgery Springfield, Ill Charles C Thomas1976;17- 33Google Scholar
Weber-Krause  BEckardt  C Incidence of posterior vitreous detachment in the elderly.  Ophthalmologe. 1997;94619- 623Google ScholarCrossref
Hikichi  THirokawa  HKado  M  et al.  Comparison of the prevalence of posterior vitreous detachment in whites and Japanese.  Ophthalmic Surg. 1995;2639- 43Google Scholar
Yonemoto  JIdeta  HSasaki  KTanaka  SHirose  AOka  C The age of onset of posterior vitreous detachment.  Graefes Arch Clin Exp Ophthalmol. 1994;23267- 70Google ScholarCrossref
Eisner  G Biomicroscopy of the Peripheral Fundus.  New York, NY Springer-Verlag1973;
Eisner  G Posterior vitreous detachment.  Klin Monatsbl Augenheilkd. 1989;194389- 392Google ScholarCrossref
Sebag  J Classifying posterior vitreous detachment: a new way to look at the invisible.  Br J Ophthalmol. 1997;81521- 522Google ScholarCrossref
Hee  MRPuliafito  CAWong  C  et al.  Optical coherence tomography of macular holes.  Ophthalmology. 1995;102748- 756Google ScholarCrossref
Puliafito  CAHee  MRSchuman  JS  et al.  Optical Coherence Tomography of Ocular Diseases.  SLACK Inc Thorofare, NJ1996;
Gaudric  AHaouchine  BMassin  PPaques  MBlain  PErginay  A Macular hole formation: new data provided by optical coherence tomography.  Arch Ophthalmol. 1999;117744- 751Google ScholarCrossref
Chauhan  DSAntcliff  RJRai  PAWilliamson  THMarshall  J Papillofoveal traction in macular hole formation: the role of optical coherence tomography.  Arch Ophthalmol. 2000;11832- 38Google ScholarCrossref
Tolentino  FISchepens  CLFreeman  HM Vitreoretinal Disorders: Diagnosis and Management.  Philadelphia, Pa WB Saunders1976;130- 150
Kakehashi  AKado  MAkiba  JHirokawa  H Variations of posterior vitreous detachment.  Br J Ophthalmol. 1997;81527- 532Google ScholarCrossref
Sebag  J The Vitreous: Structure, Function, and Pathobiology.  New York, NY Springer-Verlag1989;
Foos  RY Posterior vitreous detachment.  Trans Am Acad Ophthalmol Otolaryngol. 1972;76480- 497Google Scholar
Avila  MPJalkh  AEMurakami  KTrempe  CLSchepens  CL Biomicroscopic study of the vitreous in macular breaks.  Ophthalmology. 1983;901277- 1283Google ScholarCrossref
Clinical Sciences
October 2001

Initial Stages of Posterior Vitreous Detachment in Healthy Eyes of Older Persons Evaluated by Optical Coherence Tomography

Author Affiliations

From the Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan.

Arch Ophthalmol. 2001;119(10):1475-1479. doi:10.1001/archopht.119.10.1475

Objective  To promote understanding of the development of posterior vitreous detachment(PVD) in healthy eyes using optical coherence tomography (OCT).

Methods  We studied 209 eyes of 209 healthy volunteers (165 men and 44 women; mean age, 52.3 years [range, 31-74 years]). In addition to biomicroscopy and ophthalmoscopy, OCT was performed to obtain high-resolution cross-sectional images of the vitreoretinal interface in the posterior fundus.

Results  The condition of the posterior vitreoretinal interface was classified as 1 of 5 stages, according to biomicroscopic findings and OCT images relative to discrete linear signals indicating a detached posterior vitreous face: stage 0, no PVD (61 eyes [29.2%]); stage 1, incomplete perifoveal PVD in up to 3 quadrants (100 eyes [47.8%]); stage 2, incomplete perifoveal PVD in all quadrants, with residual attachment to the fovea and optic disc (26 eyes [12.4%]); stage 3, incomplete PVD over the posterior pole, with residual attachment to the optic disc (4 eyes [1.9%]); or stage 4, complete PVD identified with biomicroscopy, but not with OCT because of instrument limitations (18 eyes[8.6%]). Stage 1, 2, and 3 incomplete PVD without subjective symptoms was not recognizable on contact lens biomicroscopy. There was a significant age-related progression in the condition of the vitreoretinal interface from stage 0 to stage 4. The superior quadrant was usually the initial site of incomplete PVD.

Conclusions  Optical coherence tomography demonstrates that healthy human eyes have incomplete or partial PVD beginning as early as the fourth decade of life. Age-related PVD occurs initially as a focal detachment in the perifovea of 1 quadrant, with persistent attachment to the fovea and optic nerve head, with a predilection for the superior quadrant. It extends its range slowly for years and eventually results in complete PVD, associated with release of vitreopapillary adhesion.