Adenovirus-Mediated Gene Therapy Using Human p21WAF-1/Cip-1to Prevent Wound Healing in a Rabbit Model of Glaucoma Filtration Surgery | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Levine  AJ p53, the cellular gatekeeper for growth and division.  Cell. 1997;88323- 332Google ScholarCrossref
El-Deiry  WTokino  TVelculescu  VE  et al.  WAF1, a potential mediator of p53 tumor suppression.  Cell. 1993;75817- 825Google ScholarCrossref
El-Deiry  WSHarper  JWO'Connor  PM  et al.  WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis.  Cancer Res. 1994;541169- 1174Google Scholar
Harper  JWAdami  GRWei  NKeyomarsi  KElledge  SJ The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases.  Cell. 1993;75805- 816Google ScholarCrossref
Gartel  ALSerfas  MSTyner  AL p21: negative regulator of the cell cycle.  Proc Soc Exp Biol Med. 1996;213138- 149Google ScholarCrossref
Erhardt  JAPittman  RN p21WAF1 induces permanent growth arrest and enhances differentiation, but does not alter apoptosis in PC12 cells.  Oncogene. 1998;16443- 451Google ScholarCrossref
Joshi  USChen  YOKalemkerian  GPAdil  MRKraut  MSarkar  FH Inhibition of tumor growth by p21WAF1 adenoviral gene transfer in lung cancer.  Cancer Gene Ther. 1998;5183- 191Google Scholar
Mobley  SRLiu  TJHudson  JMClayman  GL In vitro growth suppression by adenoviral transduction of p21 and p16 in squamous cell carcinoma of the head and neck: a research model for combination gene therapy.  Arch Otolaryngol Head Neck Surg. 1998;12488- 92Google ScholarCrossref
Nielsen  LLManeval  DC p53 tumor suppressor gene therapy for cancer.  Cancer Gene Ther. 1998;552- 63Google Scholar
Schuler  MHermann  RDe Greve  JL  et al.  Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non–small-cell lung cancer: results of a multicenter phase II study.  J Clin Oncol. 2001;191750- 1758Google Scholar
Perkins  TWGangnon  RLadd  WKaufman  PLHeatley  GA Trabeculectomy with mitomycin C: intermediate-term results.  J Glaucoma. 1998;7230- 236Google Scholar
Jampel  HDMoon  JI The effect of paclitaxel powder on glaucoma filtration surgery in rabbits.  J Glaucoma. 1998;7170- 177Google Scholar
Mietz  HChevez-Barrios  PFeldman  RMLieberman  MW Suramin inhibits wound healing following filtering procedures for glaucoma.  Br J Ophthalmol. 1998;82816- 820Google ScholarCrossref
Cordeiro  MFGay  JAKhaw  PT Human anti–transforming growth factor-β2 antibody: a new glaucoma anti-scarring agent.  Invest Ophthalmol Vis Sci. 1999;402225- 2234Google Scholar
Wills  KNManeval  DCMenzel  P  et al.  Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer.  Hum Gene Ther. 1994;51079- 1088Google ScholarCrossref
Huyghe  BGLiu  XDSutjipto  S  et al.  Purification of a type 5 recombinant adenovirus encoding human p53 by column chromatography.  Hum Gene Ther. 1995;61403- 1416Google ScholarCrossref
Wen  SFXie  LMcDonald  M  et al.  Development and validation of sensitive assays to quantitate gene expression after p53 gene therapy and paclitaxel chemotherapy using in vivo dosing in tumor xenograft models.  Cancer Gene Ther. 2000;71469- 1480Google ScholarCrossref
Nork  TMPoulsen  GMillecchia  LLJantz  RGNickells  RW p53 regulates apoptosis in human retinoblastoma.  Arch Ophthalmol. 1997;115213- 219Google ScholarCrossref
Abrams  LSVitale  SJampel  HD Comparison of three tonometers for measuring intraocular pressure in rabbits.  Invest Ophthalmol Vis Sci. 1996;37940- 944Google Scholar
Gomori  GL A rapid one-step trichrome.  Am J Clin Pathol. 1950;20661Google Scholar
Bárány  EH Simultaneous measurement of changing intraocular pressure and outflow facility in the vervet monkey by constant pressure infusion.  Invest Ophthalmol. 1964;2135- 143Google Scholar
Miller  MHGrierson  IUnger  WIHitchings  RA Wound healing in an animal model of glaucoma fistulizing surgery in the rabbit.  Ophthalmic Surg. 1989;20350- 357Google Scholar
Suner  IJGreenfield  DSMiller  MPNicolela  MTPalmberg  PF Hypotony maculopathy after filtering surgery with mitomycin C: incidence and treatment.  Ophthalmology. 1997;104207- 214Google ScholarCrossref
Higginbotham  EJStevens  RKMusch  DC  et al.  Bleb-related endophthalmitis after trabeculectomy with mitomycin C.  Ophthalmology. 1996;103650- 656Google ScholarCrossref
Greenfield  DSLiebmann  JMJee  JRitch  R Late-onset bleb leaks after glaucoma filtering surgery.  Arch Ophthalmol. 1998;116443- 447Google ScholarCrossref
Akova  YABulut  SDabil  HDuman  S Late bleb-related endophthalmitis after trabeculectomy with mitomycin C.  Ophthalmic Surg Lasers. 1999;30146- 151Google Scholar
Daniels  JTOccleston  NLCrowston  JG  et al.  Understanding and controlling the scarring response: the contribution of histology and microscopy.  Microsc Res Tech. 1998;42317- 333Google ScholarCrossref
Tomasz  M Mitomycin C: small, fast and deadly (but very selective).  Chem Biol. 1995;2575- 579Google ScholarCrossref
Paz  MMDas  TATomasz  M Mitomycin C linked to DNA minor groove binding agents: synthesis, reductive activation, DNA binding and cross-linking properties and in vitro antitumor activity.  Bioorg Med Chem. 1999;72713- 2726Google ScholarCrossref
Crowston  JGAkbar  ANConstable  PHOccleston  NLDaniels  JTKhaw  PT Antimetabolite-induced apoptosis in Tenon's capsule fibroblasts.  Invest Ophthalmol Vis Sci. 1998;39449- 454Google Scholar
Kondo  YKondo  SLiu  JBHaqqi  TBarnett  GHBarna  BP Involvement of p53 and waf1/cip1 in γ-irradiation–induced apoptosis of retinoblastoma cells.  Exp Cell Res. 1997;23651- 56Google ScholarCrossref
Tsao  YPHuang  SJChang  JLHsieh  JTPong  RCChen  SL Adenovirus-mediated p21(WAF1/SDII/CIP1) gene transfer induces apoptosis of human cervical cancer cell lines.  J Virol. 1999;734983- 4990Google Scholar
Laboratory Sciences
July 2002

Adenovirus-Mediated Gene Therapy Using Human p21WAF-1/Cip-1to Prevent Wound Healing in a Rabbit Model of Glaucoma Filtration Surgery

Author Affiliations

From the Departments of Ophthalmology and Visual Sciences (Drs Perkins, Kaufman, and Nickells and Mss Kiland and Poulsen) and Biostatistics and Medical Informatics (Ms Brumback), University of Wisconsin, Madison; Canji, Inc, San Diego, Calif (Drs Faha, Ni, Antelman, Atencio, and Maneval and Mr Shinoda); and Schering Plough Research Institute, Lafayette, NJ (Dr Sinha). Drs Kaufman and Nickells have worked as consultants to Canji, Inc.

Arch Ophthalmol. 2002;120(7):941-949. doi:10.1001/archopht.120.7.941

Objective  To determine if adenovirus-mediated p21WAF-1/Cip-1 (p21) gene therapy can prevent fibroproliferation and wound healing in a rabbit model of glaucoma filtration surgery.

Methods  In vitro studies were performed using rabbit Tenon fibroblasts harvested from fresh tissue. In vivo studies were conducted in New Zealand white rabbits. A full-thickness sclerotomy was performed under a limbal-based conjunctival flap. Reagents tested included a replication-deficient recombinant adenovirus containing the human p21 gene (rAd.p21); the nonspecific marker gene for green fluorescent protein or β-galactosidase; mitomycin, 0.5 mg/mL; and balanced saline solution. Each treatment was applied episclerally for 5 minutes before the sclerotomy using a soaked cellulose sponge placed under the surgically created conjunctival flap. Independent experiments were conducted to (1) monitor changes in intraocular pressure during a 30-day period after treatment and examine surgical site histological features, (2) examine changes in bleb morphologic features over 30 days, (3) determine outflow facility 14 days after treatment, and (4) examine the localization and persistence of rAd.p21 expression between 3 and 60 days after treatment.

Results  Treatment of Tenon fibroblasts with rAd.p21 resulted in a dose-dependent inhibition of DNA synthesis and cell growth in vitro. In vivo, rAd.p21 inhibited wound healing and fibroproliferation after filtration surgery, comparably to mitomycin. Mitomycin caused notable thinning of the bleb wall. In addition, 2 of the 5 mitomycin-treated eyes exhibited an abscess with hypopyon and hyalitis 30 days after surgery, which was not observed in any of the rAd.p21-treated eyes. None of the treatments resulted in a significantly sustained decrease in intraocular pressure during the 30-day period, although mitomycin treatment resulted in a significant (P = .02) increase in outflow facility 2 weeks after surgery in separate animals. Mitomycin- and rAd.p21-treated eyes had functioning blebs at the end of the experiment based on slitlamp examination.

Conclusions  Mitomycin and rAd.p21 were effective in preventing fibroproliferation and wound healing in a rabbit model of glaucoma surgery. Mitomycin treatment increased outflow facility in normal-pressure eyes.

Clinical Relevance  Gene therapy with rAd.p21 may provide an effective antiproliferative for glaucoma filtration surgery, without the complications associated with mitomycin.