Oculomotor Response to Cumulative Subconcussive Head Impacts in US High School Football Players: A Pilot Longitudinal Study | Adolescent Medicine | JAMA Ophthalmology | JAMA Network
[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Original Investigation
December 20, 2018

Oculomotor Response to Cumulative Subconcussive Head Impacts in US High School Football Players: A Pilot Longitudinal Study

Author Affiliations
  • 1Department of Sports Medicine, Washington Township Medical Foundation, Union City, California
  • 2Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington
  • 3Center for Health and the Environment, University of California, Davis
  • 4Division of Washington Sports Medicine, Irvington High School, Fremont, California
  • 5Department of Kinesiology, School of Public Health, Indiana University, Bloomington
  • 6Neuroscience Program, College of Arts and Sciences, Indiana University, Bloomington
JAMA Ophthalmol. 2019;137(3):265-270. doi:10.1001/jamaophthalmol.2018.6193
Key Points

Question  What is the association between near point of convergence (NPC) values and subconcussive head impacts in high school football players across repeated measurements in a single football season?

Findings  This longitudinal case-series study assessed NPC measurements at 14 different points in a football season in 12 football players and found that NPC values were impaired beyond baseline. The impairment was associated with cumulative subconcussive head impacts, and NPC values began normalizing to baseline levels in midseason while players continued to incur head impacts.

Meaning  These data suggest the NPC has the potential to reflect subclinical brain damage but may develop tolerance at a certain point to recurring subconcussive impacts.


Importance  Repetitive subconcussive head impacts in sports have emerged as a complex public health issue. Most of these head impacts remain asymptomatic yet have the potential to cause insidious neurological deficit if sustained repetitively. Near point of convergence (NPC) values have shown to reflect subclinical neuronal damage; however, the longitudinal pattern of NPC changes in association with subconcussive head impacts remains unclear.

Objectives  To examine the NPC response to recurring subconcussive head impacts in a single high school football season through a series of repeated measurements.

Design, Setting, and Participants  This prospective case-series study of US varsity high school football players included baseline measurements of NPC, measurements at pregame and postgame points from 6 in-season games, and postseason follow-up measurements (a total of 14 points). An accelerometer-embedded mouthguard measured head impact frequency and magnitude from all practices and games. During the 6 games, players wore chest-strap heart rate monitors to record heart rate and estimate their excess postexercise oxygen consumption, accounting for possible physical exertion effects on NPC values.

Exposures  Players participated in practices and games with no restriction.

Main Outcomes and Measures  Near point of convergence.

Results  The 12 included players were all boys, with a mean (SD) age of 16.4 (0.5) years. A total of 8009 head impacts, 177 907 g of peak linear acceleration, and 16 123 371 rad/s2 of peak rotational acceleration were recorded from the players in a single football season. There was a significant increase in NPC over time until the middle of the season (mean [SD] NPC: baseline, 5.25 [1.49] cm; pregame 3, 6.42 [1.93] cm; P = .01), which was significantly associated with subconcussive head impact frequency and magnitude (0.02 cm per 100 g of peak linear acceleration [SE, 0.0108; 95% CI, 0.0436-0.004]; P = .01; 0.023 cm per 10 000 rad/s2 of peak rotational acceleration [SE, 0.009; 95% CI, 0.041-0.0105]; P = .02). However, NPC values began to normalize toward baseline level from midseason (mean [SD] NPC: baseline, 5.25 [1.49] cm; pregame 6, 5.75 [2.23] cm; P = .32), as supported by a significant quadratic trend (β [SE], −0.002 [0.001] cm/d; P = .003), while participants continued to incur subconcussive head impacts.

Conclusions and Relevance  This longitudinal case series study suggests that NPC can be perturbed over the long term by subconcussive head impacts but may normalize over time. The oculomotor system may have an adaptational capacity to subclinical head impacts, yet the mechanism for such remains an open question and warrants further investigation.