Current Prevalence of Myopia and Association of Myopia With Environmental Factors Among Schoolchildren in Japan | Ophthalmology | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Dolgin  E.  The myopia boom.  Nature. 2015;519(7543):276-278. doi:10.1038/519276aPubMedGoogle ScholarCrossref
Holden  BA, Fricke  TR, Wilson  DA,  et al.  Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050.  Ophthalmology. 2016;123(5):1036-1042. doi:10.1016/j.ophtha.2016.01.006PubMedGoogle ScholarCrossref
Ip  JM, Saw  SM, Rose  KA,  et al.  Role of near work in myopia: findings in a sample of Australian school children.  Invest Ophthalmol Vis Sci. 2008;49(7):2903-2910. doi:10.1167/iovs.07-0804PubMedGoogle ScholarCrossref
Rose  KA, Morgan  IG, Ip  J,  et al.  Outdoor activity reduces the prevalence of myopia in children.  Ophthalmology. 2008;115(8):1279-1285. doi:10.1016/j.ophtha.2007.12.019PubMedGoogle ScholarCrossref
Jones  LA, Sinnott  LT, Mutti  DO, Mitchell  GL, Moeschberger  ML, Zadnik  K.  Parental history of myopia, sports and outdoor activities, and future myopia.  Invest Ophthalmol Vis Sci. 2007;48(8):3524-3532. doi:10.1167/iovs.06-1118PubMedGoogle ScholarCrossref
French  AN, Morgan  IG, Mitchell  P, Rose  KA.  Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study.  Ophthalmology. 2013;120(10):2100-2108. doi:10.1016/j.ophtha.2013.02.035PubMedGoogle ScholarCrossref
Matsumura  H, Hirai  H.  Prevalence of myopia and refractive changes in students from 3 to 17 years of age.  Surv Ophthalmol. 1999;44(suppl 1):S109-S115. doi:10.1016/S0039-6257(99)00094-6PubMedGoogle ScholarCrossref
Hiraoka  T, Kotsuka  J, Kakita  T, Okamoto  F, Oshika  T.  Relationship between higher-order wavefront aberrations and natural progression of myopia in schoolchildren.  Sci Rep. 2017;7(1):7876. doi:10.1038/s41598-017-08177-6PubMedGoogle ScholarCrossref
Zhang  N, Yang  XB, Zhang  WQ,  et al.  Relationship between higher-order aberrations and myopia progression in schoolchildren: a retrospective study.  Int J Ophthalmol. 2013;6(3):295-299.PubMedGoogle Scholar
Vasudevan  B, Fisher  B, Case  B, Lam  P, Wayman  J.  Progression of lower and higher-order aberrations: a longitudinal study.  BMC Ophthalmol. 2015;15:11. doi:10.1186/1471-2415-15-11PubMedGoogle ScholarCrossref
Charman  WN.  Aberrations and myopia.  Ophthalmic Physiol Opt. 2005;25(4):285-301. doi:10.1111/j.1475-1313.2005.00297.xPubMedGoogle ScholarCrossref
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.  JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053PubMedGoogle ScholarCrossref
Lewis  JR, Knellinger  AE, Mahmoud  AM, Mauger  TF.  Effect of soft contact lenses on optical measurements of axial length and keratometry for biometry in eyes with corneal irregularities.  Invest Ophthalmol Vis Sci. 2008;49(8):3371-3378. doi:10.1167/iovs.07-1247PubMedGoogle ScholarCrossref
Goss  DA, Jackson  TW.  Clinical findings before the onset of myopia in youth. I. Ocular optical components.  Optom Vis Sci. 1995;72(12):870-878. doi:10.1097/00006324-199512000-00005PubMedGoogle ScholarCrossref
Grosvenor  T, Goss  DA.  Role of the cornea in emmetropia and myopia.  Optom Vis Sci. 1998;75(2):132-145. doi:10.1097/00006324-199802000-00017PubMedGoogle ScholarCrossref
He  M, Xiang  F, Zeng  Y,  et al.  Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial.  JAMA. 2015;314(11):1142-1148. doi:10.1001/jama.2015.10803PubMedGoogle ScholarCrossref
Xiong  S, Sankaridurg  P, Naduvilath  T,  et al.  Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review.  Acta Ophthalmol. 2017;95(6):551-566. doi:10.1111/aos.13403PubMedGoogle ScholarCrossref
Schaumberg  DA, Sullivan  DA, Buring  JE, Dana  MR.  Prevalence of dry eye syndrome among US women.  Am J Ophthalmol. 2003;136(2):318-326. doi:10.1016/S0002-9394(03)00218-6PubMedGoogle ScholarCrossref
Uchino  M, Schaumberg  DA, Dogru  M,  et al.  Prevalence of dry eye disease among Japanese visual display terminal users.  Ophthalmology. 2008;115(11):1982-1988. doi:10.1016/j.ophtha.2008.06.022PubMedGoogle ScholarCrossref
Uchino  M, Dogru  M, Uchino  Y,  et al. Japan Ministry of Health study on prevalence of dry eye disease among Japanese high school students. Am J Ophthalmol.2008;146(6):925-929, e922.
Tomioka  K, Iwamoto  J, Saeki  K, Okamoto  N.  Reliability and validity of the International Physical Activity Questionnaire (IPAQ) in elderly adults: the Fujiwara-kyo Study.  J Epidemiol. 2011;21(6):459-465. doi:10.2188/jea.JE20110003PubMedGoogle ScholarCrossref
Flitcroft  DI, He  M, Jonas  JB,  et al.  IMI - defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies.  Invest Ophthalmol Vis Sci. 2019;60(3):M20-M30. doi:10.1167/iovs.18-25957PubMedGoogle ScholarCrossref
Lu  TL, Wu  JF, Ye  X,  et al.  Axial length and associated factors in children: the Shandong Children Eye Study.  Ophthalmologica. 2016;235(2):78-86. doi:10.1159/000441900PubMedGoogle ScholarCrossref
Rudnicka  AR, Kapetanakis  VV, Wathern  AK,  et al.  Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention.  Br J Ophthalmol. 2016;100(7):882-890. doi:10.1136/bjophthalmol-2015-307724PubMedGoogle ScholarCrossref
Mohindra  I.  Comparison of “near retinoscopy” and subjective refraction in adults.  Am J Optom Physiol Opt. 1977;54(5):319-322. doi:10.1097/00006324-197705000-00008PubMedGoogle ScholarCrossref
Li  Y, Liu  J, Qi  P.  The increasing prevalence of myopia in junior high school students in the Haidian District of Beijing, China: a 10-year population-based survey.  BMC Ophthalmol. 2017;17(1):88. doi:10.1186/s12886-017-0483-6PubMedGoogle ScholarCrossref
Samarawickrama  C, Mitchell  P, Tong  L,  et al.  Myopia-related optic disc and retinal changes in adolescent children from Singapore.  Ophthalmology. 2011;118(10):2050-2057. doi:10.1016/j.ophtha.2011.02.040PubMedGoogle ScholarCrossref
Terasaki  H, Yamashita  T, Yoshihara  N, Kii  Y, Sakamoto  T.  Association of lifestyle and body structure to ocular axial length in Japanese elementary school children.  BMC Ophthalmol. 2017;17(1):123. doi:10.1186/s12886-017-0519-yPubMedGoogle ScholarCrossref
Tideman  JWL, Polling  JR, Jaddoe  VWV, Vingerling  JR, Klaver  CCW.  Environmental risk factors can reduce axial length elongation and myopia incidence in 6- to 9-year-old children.  Ophthalmology. 2019;126(1):127-136. doi:10.1016/j.ophtha.2018.06.029PubMedGoogle ScholarCrossref
Gordon  RA, Donzis  PB.  Refractive development of the human eye.  Arch Ophthalmol. 1985;103(6):785-789. doi:10.1001/archopht.1985.01050060045020PubMedGoogle ScholarCrossref
Zhang  J, Hur  YM, Huang  W, Ding  X, Feng  K, He  M.  Shared genetic determinants of axial length and height in children: the Guangzhou twin eye study.  Arch Ophthalmol. 2011;129(1):63-68. doi:10.1001/archophthalmol.2010.323PubMedGoogle ScholarCrossref
Koh  S.  Mechanisms of visual disturbance in dry eye.  Cornea. 2016;35(suppl 1):S83-S88. doi:10.1097/ICO.0000000000000998PubMedGoogle ScholarCrossref
Gwiazda  J, Hyman  L, Hussein  M,  et al.  A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children.  Invest Ophthalmol Vis Sci. 2003;44(4):1492-1500. doi:10.1167/iovs.02-0816PubMedGoogle ScholarCrossref
Walline  JJ, Gaume Giannoni  A, Sinnott  LT,  et al; BLINK Study Group.  A randomized trial of soft multifocal contact lenses for myopia control: baseline data and methods.  Optom Vis Sci. 2017;94(9):856-866. doi:10.1097/OPX.0000000000001106PubMedGoogle ScholarCrossref
Wolffsohn  JS, Flitcroft  DI, Gifford  KL,  et al.  IMI—myopia control reports overview and introduction.  Invest Ophthalmol Vis Sci. 2019;60(3):M1-M19. doi:10.1167/iovs.18-25980PubMedGoogle ScholarCrossref
The International Myopia Institute. Accessed May 21, 2019.
Original Investigation
August 15, 2019

Current Prevalence of Myopia and Association of Myopia With Environmental Factors Among Schoolchildren in Japan

Author Affiliations
  • 1Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
  • 2Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
  • 3Health Center, Keio University, Kanagawa, Japan
  • 4Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
JAMA Ophthalmol. 2019;137(11):1233-1239. doi:10.1001/jamaophthalmol.2019.3103
Key Points

Question  What are the prevalence of and factors associated with myopia?

Findings  In this cross-sectional study of 1478 schoolchildren at 2 schools in Tokyo, Japan, the prevalence of myopia was 76.5% among those aged 6 to 11 years and 94.9% among those aged 12 to 14 years, and the prevalence of high myopia was 4.0% among those aged 6 to 11 years and 11.3% among those aged 12 to 14 years.

Meaning  These findings suggest that prevalence rates of myopia under noncycloplegic refractive conditions are high among Japanese schoolchildren.


Importance  Given the estimates of increasing prevalence of myopia, especially in Asia, it is important to determine the current prevalence of myopia among populations of schoolchildren in Japan.

Objective  To investigate the current prevalence rate of myopia and the association between environmental factors and myopia in Japanese schoolchildren.

Design, Setting, and Participants  This cross-sectional study assessed 1478 participants, including 726 elementary school students and 752 junior high school students, at 2 schools in Tokyo, Japan, who underwent eye examinations from April 1 to May 31, 2017, that included measurement of the refractive errors by autorefractometry with noncycloplegic refraction and ocular biometric factors. After excluding those who had been treated with atropine or orthokeratology (n = 11), had a history of eye disease (n = 2), had no parental consent (n = 41), and were absent (n = 8), 1416 schoolchildren were analyzed.

Main Outcomes and Measures  The primary outcome was the prevalence of myopia and high myopia. Secondary outcomes were environmental factors that were associated with myopia.

Results  A total of 1416 schoolchildren (mean [SD] age, 10.8 [2.7] years; 792 [55.9%] male) were studied. The prevalence rates of myopia (spherical equivalent ≤−0.5 diopters [D]) were 76.5% (95% CI, 73.4%-79.7%) among the elementary school students and 94.9% (95% CI, 93.3%-96.5%) among the junior high school students. The prevalence rates of high myopia (spherical equivalent ≤−6.0 D) were 4.0% (95% CI, 2.5%-5.4%) among the elementary school students and 11.3% (95% CI, 8.8%-13.7%) among the junior high school students. The prevalence rates of high myopia classified based on axial length of 26.0 mm or longer were 1.2% (95% CI, 0.4%-2.0%) among elementary school students and 15.2% (95% CI, 12.5%-17.8%) among junior high school students. Multiple regression analysis showed that higher-order aberrations and dry eye disease were associated with refractive error in elementary school students (spherical aberration: β = 6.152; 95% CI, 3.161-9.143; P < .001; dry eye disease: β = −0.626; 95% CI, −1.189 to −0.063; P = .03) and with axial length in junior high school students (spherical-like aberration: β = 26.546; 95% CI, 18.708-34.385; P < .001; dry eye disease: β = 0.354; 95% CI, 0.131-0.578; P < .002).

Conclusions and Relevance  Although the use of noncycloplegic autorefraction with a cutoff of −0.50 D could lead to overestimation of results, these findings suggest that the current prevalence rates of myopia among elementary and junior high school students in Asia are high, especially if the results from these 2 schools are generalizable to all schoolchildren in Japan and Asia.