Effects of Insulin on Retinal and Pulsatile Choroidal Blood Flow in Humans | Diabetes | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Baron  AD Hemodynamic actions of insulin.  Am J Physiol. 1994;267 (2, pt 1) E187- E202Google Scholar
Anderson  EAHoffman  RPBalon  TWSinkey  CAMark  AL Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans.  J Clin Invest. 1991;872246- 2252Google ScholarCrossref
de Haan  CHHouben  AJde Leeuw  PWWolffenbuttel  BHSmits  PSchaper  NC Insulin-induced vasodilation: nitric oxide or adenosine [abstract]?  Diabetologia. 1998;41A174Google Scholar
Trovati  MMassucco  PMattiello  L  et al.  Insulin increases cyclic nucleotide content in human vascular smooth muscle cells: a mechanism potentially involved in insulin-induced modulation of vascular tone.  Diabetologia. 1995;38936- 941Google ScholarCrossref
Steinberg  HOBrechtel  GJohnson  AFineberg  NBaron  AD Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent: a novel action of insulin to increase nitric oxide release.  J Clin Invest. 1994;941172- 1179Google ScholarCrossref
Yki-Jarvinen  HUtriainen  T Insulin-induced vasodilatation: physiology or pharmacology?  Diabetologia. 1998;41369- 379Google ScholarCrossref
Su  ENYu  DYAlder  VACringle  SJYu  PK Direct vasodilatory effect of insulin on isolated retinal arterioles.  Invest Ophthalmol Vis Sci. 1996;372634- 2644Google Scholar
Schmetterer  LMuller  MFasching  P  et al.  Renal and ocular hemodynamic effects of insulin.  Diabetes. 1997;461868- 1874Google ScholarCrossref
Grunwald  JEDuPont  JRiva  CE Retinal haemodynamics in patients with early diabetes mellitus.  Br J Ophthalmol. 1996;80327- 331Google ScholarCrossref
Grunwald  JEBursell  SE Hemodynamic changes as early markers of diabetic retinopathy.  Curr Opin Endocrinol Diabetes. 1996;3298- 306Google ScholarCrossref
Schmetterer  LWolzt  M Ocular blood flow and associated functional deviations in diabetic retinopathy.  Diabetologia. 1999;42387- 405Google ScholarCrossref
DeFronzo  RATobin  JDAndres  R Glucose clamp technique: a method for quantifying insulin secretion and resistance.  Am J Physiol. 1979;237E214- E223Google Scholar
Riva  CEPetrig  BL Retinal blood flow: laser Doppler velocimetry and blue field simulation technique. Masters  Bed Noninvasive Diagnostic Techniques in Ophthalmology New York, NY Springer1990;390- 409Google Scholar
Schmetterer  LLexer  FUnfried  CSattmann  HFercher  AF Topical fundus pulsation measurement.  Opt Eng. 1995;34711- 716Google ScholarCrossref
Wolzt  MSchmetterer  LRheinberger  A  et al.  Comparison of non-invasive methods for the assessment of haemodynamic drug effects in healthy male and female volunteers: sex differences in cardiovascular responsiveness.  Br J Clin Pharmacol. 1995;39347- 359Google ScholarCrossref
American National Standards Institute, Safe Use of Lasers.  New York, NY American National Standards Institute1986;Standard 136.
Schmetterer  LDallinger  SFindl  O  et al.  Noninvasive investigations of the normal ocular circulation in humans.  Invest Ophthalmol Vis Sci. 1998;391210- 1220Google Scholar
Lieb  WECohen  SMMerton  DAShields  JAMitchell  DGGoldberg  BB Color Doppler imaging of the eye and orbit: technique and normal vascular anatomy.  Arch Ophthalmol. 1991;109527- 531Google ScholarCrossref
Kramer  MSFeinstein  AR Clinical biostatistics, LIV: the biostatistics of concordance.  Clin Pharmacol Ther. 1981;29111- 123Google ScholarCrossref
Bartko  JJCarpenter  WTJ On the methods and theory of reliability.  J Nerv Ment Dis. 1976;163307- 317Google ScholarCrossref
Baron  ADBrechtel  G Insulin differentially regulates systemic and skeletal muscle vascular resistance.  Am J Physiol. 1993;265 (1 pt 1) E61- E67Google Scholar
Stenvinkel  PBolinder  JAlvestrand  A Effects of insulin on renal haemodynamics and the proximal and distal tubular sodium handling in healthy subjects.  Diabetologia. 1992;351042- 1048Google ScholarCrossref
Grunwald  JERiva  CEMartin  DBQuint  AREpstein  PA Effect of an insulin-induced decrease in blood glucose on the human diabetic retinal circulation.  Ophthalmology. 1987;941614- 1620Google ScholarCrossref
Tilton  RGChang  KPugliese  G  et al.  Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors.  Diabetes. 1989;381258- 1270Google ScholarCrossref
Sullivan  PMDavies  GECaldwell  GMorris  ACKohner  EM Retinal blood flow during hyperglycemia: a laser Doppler velocimetry study.  Invest Ophthalmol Vis Sci. 1990;312041- 2045Google Scholar
Bursell  SEClermont  ACKinsley  BTSimonson  DCAiello  LMWolpert  HA Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy.  Invest Ophthalmol Vis Sci. 1996;37886- 897Google Scholar
Grunwald  JEZinn  H The acute effect of oral acetazolamide on macular blood flow.  Invest Ophthalmol Vis Sci. 1992;33504- 507Google Scholar
Scherrer  URandin  DVollenweider  PVollenweider  LNicod  P Nitric oxide release accounts for insulin's vascular effects in humans.  J Clin Invest. 1994;942511- 2515Google ScholarCrossref
Goldstein  IMOstwald  PRoth  S Nitric oxide: a review of its role in retinal function and disease.  Vision Res. 1996;362979- 2994Google ScholarCrossref
Laties  AM Central retinal artery innervation: absence of adrenergic innervation to the intraocular branches.  Arch Ophthalmol. 1967;77405- 409Google ScholarCrossref
Clinical Sciences
January 2000

Effects of Insulin on Retinal and Pulsatile Choroidal Blood Flow in Humans

Author Affiliations

From the Department of Clinical Pharmacology (Drs Polak, Polska, Eichler, Wolzt, and Schmetterer), the Institute of Medical Physics (Dr Schmetterer), and the Department of Ophthalmology and Optometry (Dr Findl), Vienna University, Vienna, Austria.

Arch Ophthalmol. 2000;118(1):55-59. doi:10.1001/archopht.118.1.55

Background  Insulin induces vasodilation in several tissues, including skeletal muscle and kidneys.

Objective  To investigate whether insulin may contribute to ocular blood flow regulation.

Methods  The study was performed in a balanced, randomized, placebo-controlled, single-masked, 3-way, crossover design in 9 healthy male subjects. Each subject received 2 doses of insulin (1.5 or 3 mU/kg per minute) or placebo on 3 different study days. Measurements of fundus pulsation amplitude with laser interferometry to assess pulsatile choroidal blood flow, of retinal blood flow with the blue-field entoptic technique, and of mean blood flow velocity in the ophthalmic artery with Doppler sonography were performed under euglycemic clamp conditions over 120 minutes.

Results  Hyperinsulinemia significantly increased fundus pulsation amplitude (1.5 mU/kg per minute: 8.7% ± 1.1% vs baseline; 3 mU/kg per minute: 13.2% ± 2.3% vs baseline; P<.001 vs placebo [analysis of variance]) and mean blood flow velocity (1.5 mU/kg per minute: 10.0% ± 4.3% vs baseline; 3 mU/kg per minute: 6.6% ± 3.5% vs baseline; P = .03 vs placebo). Retinal blood flow did not increase during administration of insulin (1.5 mU/kg per minute: 6.4% ± 8.0% vs baseline; 3 mU/kg per minute: 8.0% ± 5.1% vs baseline; P = .99 vs placebo). Neither the effect in the choroid nor that in the ophthalmic artery was dose-dependent.

Conclusion  Hyperinsulinemia significantly increases choroidal blood flow and mean blood flow velocity in the ophthalmic artery. By contrast, retinal blood flow was not influenced by hyperinsulinemia. The maximum effective dose of insulin for ocular hemodynamics is likely to be within the physiological range.