Papillofoveal Traction in Macular Hole Formation: The Role of Optical Coherence Tomography | Macular Diseases | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Ho  ACGuyer  DGFine  SL Macular hole.  Surv Ophthalmol. 1998;42393- 416Google ScholarCrossref
Hogan  HAlvarado  JAWeddell  JE Histology of the Human Eye: An Atlas and Textbook.  Philadelphia, Pa WB Saunders Co1971;393- 522
Sebag  J Age-related differences in the human vitreoretinal interface.  Arch Ophthalmol. 1991;109966- 971Google ScholarCrossref
Worst  JGF Cisternal systems of the fully developed vitreous body in the young adult.  Trans Ophthalmol Soc U K. 1977;97550- 554Google Scholar
Kishi  SShimuzu  K Posterior precortical vitreous pocket.  Arch Ophthalmol. 1990;108979- 982Google ScholarCrossref
Kishi  SDemaria  CShimuzu  K Vitreous cortical remnants at the fovea after spontaneous vitreous detachment.  Int Ophthalmol. 1986;9253- 260Google ScholarCrossref
Kiryu  JOgura  YShahidi  M  et al.  Enhanced visualization of vitreoretinal interface by laser biomicroscopy.  Ophthalmology. 1993;1001040- 1043Google ScholarCrossref
Kakehashi  ASchepens  CLTrempe  CL Vitreomacular observations, I: vitreomacular adhesion and hole in the premacular hyaloid.  Ophthalmology. 1994;1011515- 1521Google ScholarCrossref
Johnson  RNGass  JD Idiopathic macular holes: observations, stages of formation and implications for surgical intervention.  Ophthalmology. 1988;95917- 924Google ScholarCrossref
Gass  JDM Idiopathic senile macular hole: its early stages and pathogenesis.  Arch Ophthalmol. 1988;106629- 639Google ScholarCrossref
Gass  JDM Reappraisal of biomicroscopic classification of stages of development of a macular hole.  Am J Ophthalmol. 1995;119752- 759Google Scholar
Smiddy  WEMichels  RGde Bustros  S  et al.  Histopathology of tissue removed during vitrectomy for impending macular holes.  Am J Ophthalmol. 1989;108360- 364Google Scholar
Ezra  EMunro  PMCharteris  DG  et al.  Macular hole opercula: ultrastructural features and clinicopathological correlation.  Arch Ophthalmol. 1997;1151381- 1387Google ScholarCrossref
Gass  JDM Müller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses concerning its role in the pathogenesis of macular hole and foveomacular retinoschisis.  Arch Ophthalmol. 1999;117821- 823Google ScholarCrossref
Hee  MRPuliafito  CAWong  C  et al.  Optical coherence tomography of macular holes.  Ophthalmology. 1995;102748- 756Google ScholarCrossref
Johnson  MWVanNewkirk  MRMeyer  KA Perifoveal cortical vitreous separation initiates idiopathic macular hole formation [abstract].  Invest Ophthalmol Vis Sci. 1998;39 (suppl) 690Google Scholar
Huang  DSwanson  EALin  CP  et al.  Optical coherence tomography.  Science. 1991;2541178- 1181Google ScholarCrossref
Chauhan  DSMarshall  J The interpretation of optical coherence tomography images of the retina.  Invest Ophthalmol Vis Sci. 1999;402332- 2342Google Scholar
Hee  MRIzatt  JASwanson  EA  et al.  Optical coherence tomography of the human retina.  Arch Ophthalmol. 1995;113325- 332Google ScholarCrossref
Schuman  JSPedut-Kloizman  THertzmark  E  et al.  Reproducibility of nerve fibre layer thickness measurements using optical coherence tomography.  Ophthalmology. 1996;1031889- 1898Google ScholarCrossref
Sebag  JBalasz  EA Human virteous fibres and vireoretinal disease.  Eye. 1985;104123- 128Google Scholar
Grierson  IMazure  AHogg  P  et al.  Non-vascular vitreoretinopathy: the cells and the cellular basis of contraction.  Eye. 1996;10 (pt 6) 671- 684Google ScholarCrossref
Coleman  DJLizzi  FLJack  RL Ultrasonography of the Eye and Orbit.  Philadelphia, Pa Lea & Febiger1977;
Jaffe  NS Vitreous traction at the posterior pole of the fundus due to alterations in the vitreous posterior.  Trans Am Acad Ophthalmol Otolaryngol. 1967;71642- 651Google Scholar
Grierson  IJoseph  JMiller  MDay  JE Wound repair: the fibroblast and the inhibition of scar formation.  Eye. 1988;2135- 148Google ScholarCrossref
Straatsma  BRLanders  MKreiger  AE Topography of the human adult retina.  UCLA Forum Med Sci. 1969;8379- 410Google Scholar
Clinical Sciences
January 2000

Papillofoveal Traction in Macular Hole Formation: The Role of Optical Coherence Tomography

Author Affiliations

From the Department of Ophthalmology, United Medical Schools of Guy's and St Thomas' (Drs Chauhan, Antcliff, and Marshall), and the Vitreoretinal Service, Department of Ophthalmology, St Thomas' Hospital (Drs Rai and Williamson), London, England.

Arch Ophthalmol. 2000;118(1):32-38. doi:10.1001/archopht.118.1.32

Objectives  To determine the validity of the assumption that optical coherence tomographic scans of macular holes have a discrete linear signal (DLS) that represents a detached posterior vitreous face, and to analyze the DLS in macular hole pathogenesis.

Methods  Optical coherence tomographic scans were taken of 3 situations in which the vitreous conditions were known: (1) dissected intact vitreous, (2) clinically evident Weiss rings, and (3) maculae before and after saccades in eyes without a biomicroscopic posterior vitreous detachment. In addition, 70 eyes of 35 patients with macular holes underwent clinical examination and optical coherence tomographic scanning that passed through the optic disc and the fovea or macular hole.

Results  Spatial properties of the DLS matched those of the posterior vitreous face in the situations examined. Of the 70 eyes, 16 (23%) had a biomicroscopic posterior vitreous detachment, whereas a DLS was demonstrated in 40 (57%). Of the 54 eyes without a biomicroscopic posterior vitreous detachment, 18 (33%) had a DLS attached focally to the optic disc margin and the fovea or macular hole. All 7 of the "can opener" holes examined had a nasally "hinged" central flap, 6 with a focally attached DLS.

Conclusions  The DLS corresponds to the posterior vitreous face. Anteronasal papillofoveal traction may generate some macular holes.