H-7 Effects on the Structure and Fluid Conductance of Monkey Trabecular Meshwork | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.238.77. Please contact the publisher to request reinstatement.
1.
Millar  JCGabelt  BTKaufman  PL Aqueous humor dynamics. Tasman  WJaeger  EAeds Duane's Clinical Ophthalmology. Vol 3 Philadelphia, Pa Lippincott-Raven Publishers1998;1- 34Google Scholar
2.
Ritch  RedShields  MBedKrupin  Ted The Glaucomas: Basic Sciences. 2nd ed. St Louis, Mo Mosby–Year Book Inc1996;
3.
Ujiie  KBill  A The drainage routes for aqueous humor in monkeys as revealed by scanning electron microscopy of corrosion casts.  Scan Electron Microsc. 1984; ((pt 2)) 849- 856Google Scholar
4.
Epstein  DLRohen  JW Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye.  Invest Ophthalmol Vis Sci. 1991;32160- 171Google Scholar
5.
Buller  CJohnson  D Segmental variability of the trabecular meshwork in normal and glaucomatous eyes.  Invest Ophthalmol Vis Sci. 1994;353841- 3851Google Scholar
6.
Bill  ASvedbergh  B Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm: an attempt to localize the main resistance to outflow of aqueous humor in man.  Acta Ophthalmol (Copenh). 1972;50295- 320Google ScholarCrossref
7.
Ethier  CRKamm  RDPalaszewski  BAJohnson  MCRichardson  TM Calculations of flow resistance in the juxtacanalicular meshwork.  Invest Ophthalmol Vis Sci. 1986;271741- 1750Google Scholar
8.
Allingham  RRde Kater  AWEthier  CRAnderson  PJ The relationship between pore density and outflow facility in human eyes.  Invest Ophthalmol Vis Sci. 1992;331661- 1669Google Scholar
9.
Murphy  CGJohnson  MCAlvarado  JA Juxtacanalicular tissue in pigmentary and primary open angle glaucoma: the hydrodynamic role of pigment and other constituents.  Arch Ophthalmol. 1992;1101779- 1785Google ScholarCrossref
10.
Johnson  DH The effect of cytochalasin D on outflow facility and the trabecular meshwork of the human eye in perfusion organ culture.  Invest Ophthalmol Vis Sci. 1997;382790- 2799Google Scholar
11.
Kaufman  PLBárány  EH Cytochalasin B reversibly increases outflow facility in the eye of the cynomolgus monkey.  Invest Ophthalmol Vis Sci. 1977;1647- 53Google Scholar
12.
Peterson  JATian  BBershadsky  AD  et al.  Latrunculin-A increases outflow facility in the monkey.  Invest Ophthalmol Vis Sci. 1999;40931- 941Google Scholar
13.
Tian  BKaufman  PLVolberg  TGabelt  BTGeiger  B H-7 disrupts the actin cytoskeleton and increases outflow facility.  Arch Ophthalmol. 1998;116633- 643Google ScholarCrossref
14.
Tian  BGabelt  BTPeterson  JAKiland  JAKaufman  PL H-7 increases trabecular facility and facility after ciliary muscle disinsertion in monkeys.  Invest Ophthalmol Vis Sci. 1999;40239- 242Google Scholar
15.
Tian  BGabelt  BTKaufman  PL Effect of staurosporine on outflow facility in monkeys.  Invest Ophthalmol Vis Sci. 1999;401009- 1011Google Scholar
16.
Svedbergh  BLütjen-Drecoll  EOber  MKaufman  PL Cytochalasin B–induced structural changes in the anterior ocular segment of the cynomolgus monkey.  Invest Ophthalmol Vis Sci. 1978;17718- 734Google Scholar
17.
Epstein  DLRowlette  LLRoberts  BC Acto-myosin drug effects and aqueous outflow function.  Invest Ophthalmol Vis Sci. 1999;4074- 81Google Scholar
18.
Volberg  TGeiger  BCiti  SBershadsky  AD Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system.  Cell Motil Cytoskeleton. 1994;29321- 338Google ScholarCrossref
19.
Gills  JPRoberts  BCEpstein  DL Microtubule disruption leads to cellular contraction in human trabecular meshwork cells.  Invest Ophthalmol Vis Sci. 1998;39653- 658Google Scholar
20.
Tian  BMillar  CKaufman  PLBershadsky  ABecker  EGeiger  B H-7 effects on the iris and ciliary muscle in monkeys.  Arch Ophthalmol. 1998;1161070- 1077Google ScholarCrossref
21.
Bárány  EH Simultaneous measurement of changing intraocular pressure and outflow facility in the vervet monkey by constant pressure infusion.  Invest Ophthalmol. 1964;3135- 143Google Scholar
22.
Bárány  EH Relative importance of autonomic nervous tone and structure as determinants of outflow resistance in normal monkey eyes (Cercopithecus ethiops and Macaca irus). Rohen  JWed The Structure of the Eye Second Symposium. Stuttgart, Germany FK Schattauer Verlag1965;223- 236Google Scholar
23.
Littel  RCMilliken  GAStroup  WWWolfinger  RD SAS System for Mixed Models.  Cary, NC SAS Institute Inc1996;
24.
Ito  SKarnovsky  MJ Formadehyde-glutaraldehyde fixatives containing trinitro compounds [abstract].  J Cell Biol. 1968;39 ((suppl)) 168A- 169AGoogle Scholar
25.
Erickson  KAKaufman  PL Comparative effects of three ocular perfusates on outflow facility in the cynomolgus monkey.  Curr Eye Res. 1981;1211- 216Google ScholarCrossref
26.
Knepper  PAFarbman  AITelser  AG Exogenous hyaluronidases and degradation of hyaluronic acid in the rabbit eye.  Invest Ophthalmol Vis Sci. 1984;25286- 293Google Scholar
27.
Bárány  EHWoodin  AM Hyaluronic acid and hyaluronidase in the aqueous humor and the angle of the anterior chamber.  Acta Physiol Scand. 1955;33257- 290Google ScholarCrossref
28.
Kee  CGabelt  BTGange  SJKaufman  PL Serum effects on aqueous outflow during anterior chamber perfusion in monkeys.  Invest Ophthalmol Vis Sci. 1996;371840- 1848Google Scholar
29.
Hidaka  HInagaki  MKawamoto  SSasaki  Y Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C.  Biochemistry. 1984;235036- 5041Google ScholarCrossref
30.
Chrzanowska-Wodnicka  MBurridge  K Rho-stimulated contractility drives the formation of stress fibers and focal adhesions.  J Cell Biol. 1996;1331403- 1415Google ScholarCrossref
31.
Uehata  MIshizaki  TSatoh  H  et al.  Calcium sensitization of smooth muscle mediated by a rho-associated protein kinase in hypertension.  Nature. 1997;389990- 994Google ScholarCrossref
32.
Kumar  JRao  PVRowlette  LLBorras  TEpstein  DL Rho GTPase-mediated actin cytoskeletal reorganization in outflow pathway cells may modulate outflow function [abstract].  Invest Ophthalmol Vis Sci. 1999;40S669Google Scholar
33.
Lütjen-Drecoll  E Structural factors influencing outflow facility and its changeability under drugs: a study in Macaca arctoides Invest Ophthalmol. 1973;12280- 294Google Scholar
34.
Kaufman  PLBárány  EH Loss of acute pilocarpine effect on outflow facility following surgical disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the cynomolgus monkey.  Invest Ophthalmol. 1976;15793- 807Google Scholar
35.
Johnson  MShapiro  AEthier  CRKamm  RD Modulation of outflow resistance by the pores of the inner wall endothelium.  Invest Ophthalmol Vis Sci. 1992;331670- 1675Google Scholar
36.
Grierson  ILee  WR Acid mucopolysaccharides in the outflow apparatus.  Exp Eye Res. 1975;21417- 431Google ScholarCrossref
37.
Segawa  K Electron microscopic changes of the trabecular tissue in primary open-angle glaucoma.  Ann Ophthalmol. 1979;1149- 54Google Scholar
38.
Rohen  JW Why is intraocular pressure elevated in chronic simple glaucoma?  Ophthalmology. 1983;90758- 765Google ScholarCrossref
39.
Lütjen-Drecoll  EShimizu  TRohrbach  MRohen  JW Quantitative analysis of "plaque material" in the inner- and outer wall of Schlemm's canal in normal- and glaucomatous eyes.  Exp Eye Res. 1986;42443- 455Google ScholarCrossref
40.
Acott  TS Trabecular extracellular matrix regulation. Drance  SMVan Buskirk  EMNeufeld  AHeds Pharmacology of Glaucoma. Baltimore, Md Williams & Wilkins1992;125- 157Google Scholar
41.
Hubbard  WCJohnson  MGong  H  et al.  Intraocular pressure and outflow facility are unchanged following acute and chronic intracameral chondroitinase ABC and hyaluronidase in monkeys.  Exp Eye Res. 1997;65177- 190Google ScholarCrossref
42.
Acott  TSWestcott  MPasso  MSVan Buskirk  EM Trabecular meshwork glycosaminoglycans in human and cynomolgus monkey eye.  Invest Ophthalmol Vis Sci. 1985;261320- 1329Google Scholar
43.
Acott  TS Biochemistry of aqueous humor outflow: glaucoma. Kaufman  PLMittag  Teds Glaucoma. London, England Mosby–Year Book Europe Ltd1994;1.47- 1.78Google Scholar
44.
Knepper  PAGoossens  WHvizd  MPalmberg  PF Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma.  Invest Ophthalmol Vis Sci. 1996;371360- 1367Google Scholar
45.
Knepper  PAGoossens  WPalmberg  PF Glycosaminoglycan stratification of the juxtacanalicular tissue in normal and primary open-angle glaucoma.  Invest Ophthalmol Vis Sci. 1996;372414- 2425Google Scholar
46.
Lütjen-Drecoll  EBárány  EH Functional and electron microscopic changes in the trabecular meshwork remaining after trabeculectomy in cynomolgus monkeys.  Invest Ophthalmol. 1974;13511- 524Google Scholar
47.
Erickson-Lamy  KAKaufman  PLMcDermott  MLFrance  NK Comparative anesthetic effects of aqueous humor dynamics in the cynomolgus monkeys.  Arch Ophthalmol. 1984;1021815- 1820Google ScholarCrossref
48.
Keller  HUNiggli  VZimmermann  APortmann  R The protein kinase C inhibitor H-7 activates human neutrophils: effect on shape, actin polymerization, fluid pinocytosis and locomotion.  J Cell Sci. 1990;96 ((pt 1)) 99- 106Google Scholar
Laboratory Sciences
July 2000

H-7 Effects on the Structure and Fluid Conductance of Monkey Trabecular Meshwork

Author Affiliations

From the Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (Drs Sabanay and Geiger); and the Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison (Ms Gabelt and Drs Tian and Kaufman). The University of Wisconsin, Madison, and the Weizmann Institute of Science hold a patent related to this article; accordingly, Drs Kaufman and Geiger have a proprietary interest in the article. Alcon Laboratories, Inc, Fort Worth, Tex, has paid a fee to Drs Kaufman and Geiger for an option to license this technology and has provided some financial support in this general area. Dr Kaufman has also served as a paid consultant on unrelated issues for Alcon Laboratories, Inc, and several other pharmaceutical corporations.

Arch Ophthalmol. 2000;118(7):955-962. doi:10-1001/pubs.Ophthalmol.-ISSN-0003-9950-118-7-els90042
Abstract

Objective  To determine the effects of H-7 (1-[5-isoquinoline sulfonyl]-2-methyl piperazine) on the structure and fluid conductance of the trabecular meshwork of live cynomolgus monkeys.

Methods  Fluid outflow was measured by constant pressure perfusion of the anterior chamber with cationized and noncationized gold solution with or without H-7 in opposite eyes. The eyes were fixed by infusing Ito solution and enucleated. Anterior segments were cut into 4 sections, fixed in immersion solution, and embedded in epoxy resin-812. Trabecular meshwork morphologic features were studied by light and electron microscopy.

Results  H-7 affected trabecular meshwork organization and increased fluid outflow. H-7 expanded the intercellular spaces in the juxtacanalicular meshwork, accompanied by removal of extracellular material. The inner wall cells of the Schlemm canal became highly extended, yet cell-cell junctions were maintained. Colloidal gold particles were detected only in limited areas along the subcanalicular region in control eyes; after H-7 treatment, gold was widely seen along the entire inner canal wall. Most inner wall cells in H-7–treated eyes, but only few cells in control eyes, contained gold-loaded vesicles.

Conclusion  H-7 inhibits cell contractility, leading to "relaxation" of the trabecular outflow pathway, expanding the draining surface, and permitting more extensive flow through the meshwork.

Clinical Relevance  By inhibiting cellular contractility and relaxing the trabecular meshwork, the protein kinase inhibitor H-7 increases outflow facility and reduces intraocular pressure and thus has potential as an ocular hypotensive antiglaucoma medication.

×