Myocilin and Glaucoma: A TIGR by the Tail? | Genetics and Genomics | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.177.24. Please contact the publisher to request reinstatement.
1.
Stone  EMFingert  JHAlward  WLM  et al.  Identification of a gene that causes primary open-angle glaucoma.  Science. 1997;275668- 670Google ScholarCrossref
2.
Alward  WLMFingert  JHCoote  MA Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLCIA).  N Engl J Med. 1998;3381022- 1027Google ScholarCrossref
3.
Sarfarazi  M Recent advances in molecular genetics of glaucomas.  Hum Mol Genet. 1997;61667- 1677Google ScholarCrossref
4.
Polansky  JR HTM cell culture model for steroid effects on IOP: overview. Lütjen-Drecoll  Eed Basic Aspects of Glaucoma Research III. Stuttgart, Germany Schattauer1993;307- 318Google Scholar
5.
Polansky  JRFauss  DJChen  P  et al.  Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product.  Ophthalmologica. 1997;211126- 139Google ScholarCrossref
6.
Nguyen  TDChen  PHuang  WDChen  HJohnson  DPolansky  JR Gene structure and properties of MYOC, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells.  J Biol Chem. 1998;2736341- 6350Google ScholarCrossref
7.
Kubota  RNoda  SWang  Y  et al.  A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: molecular cloning, tissue expression, and chromosomal mapping.  Genomics. 1997;41360- 369Google ScholarCrossref
8.
Tomarev  SITamm  ERChang  B Characterization of the mouse Myoc-MYOC gene.  Biochem Biophys Res Commun. 1998;245887- 893Google ScholarCrossref
9.
Fingert  JHYing  LSwiderski  RE  et al.  Characterization and comparison of the human and mouse GLC1A glaucoma genes.  Genome Res. 1998;8377- 384Google Scholar
10.
Tamm  ERTomarev  SIRussell  PEpstein  DIPiatigorsky  J MYOC expression and its transcriptional control in human and mouse trabecular meshwork [abstract].  Invest Ophthalmol Vis Sci. 1998;39S34Google Scholar
11.
Tamm  ERTomarev  SIRussell  PEpstein  DLPiatigorsky  J MYOC/MYOC expression in human and mouse trabecular meshwork.  Exp Eye Res. 1998;67(suppl)S135Google Scholar
12.
Tamm  ERRussell  PEpstein  DLJohnson  DPiatigorsky  J Modulation of myocilin/MYOC expression in human trabecular meshwork.  Invest Ophthalmol Vis Sci. 1999;402577- 2582Google Scholar
13.
Ingolia  TDCraig  EA Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin.  Proc Natl Acad Sci U S A. 1982;792360- 2364Google ScholarCrossref
14.
Klemenz  RFröhli  ESteiger  RHSchäfer  RAoyama  A α-B-crystallin is a small heat shock protein.  Proc Natl Acad Sci U S A. 1991;883652- 3656Google ScholarCrossref
15.
Ellis  Jvan der Vies  SM Molecular chaperones.  Ann Rev Biochem. 1991;60321- 347Google ScholarCrossref
16.
Wang  KSpector  A α-Crystallin can act as a chaperone under conditions of oxidative stress.  Invest Ophthalmol Vis Sci. 1995;36311- 321Google Scholar
17.
Ritossa  F A new puffing pattern induced by temperature shock and DNP in Drosophila Experientia. 1962;18571- 573Google ScholarCrossref
18.
Pineda  R  IIChan  C-CNi  M  et al.  Human retinoblastoma cells express α-B-crystallin in vivo and in vitro.  Curr Eye Res. 1993;12239- 245Google ScholarCrossref
19.
Lütjen-Drecoll  EMay  CAPolansky  JRJohnson  DHBloemendal  HNguyen  TD Localization of the stress proteins α-B-crystallin and trabecular meshwork inducible glucocorticoid response protein in normal and glaucomatous trabecular meshwork.  Invest Ophthalmol Vis Sci. 1998;39517- 525Google Scholar
20.
Snyder  ADRivers  AMYokoe  HMenco  BPMAnholt  RH Olfactomedin: purification, characterization, and localization of a novel olfactory glycoprotein.  Biochemistry. 1991;309143- 9153Google ScholarCrossref
21.
Ortego  JEscribano  JCoca-Prados  M Cloning and characterization of subtracted cDNAs from a human ciliary body library encoding MYOC, a protein involved in juvenile open-angle glaucoma with homology to myosin and olfactomedin.  FEBS Lett. 1997;413349- 353Google ScholarCrossref
22.
Chen  HKitazawa  YKawase  K  et al.  Identification of a promoter sequence variant in steroid responders and evidence for a glucocorticoid-induced DNA binding protein of the MYOC gene in TM cells [abstract].  Invest Ophthalmol Vis Sci. 1999;40S505Google Scholar
23.
Tawara  AInomata  H Developmental immaturity of the trabecular meshwork in juvenile glaucoma.  Am J Ophthalmol. 1984;9882- 97Google ScholarCrossref
24.
Tawara  AInomata  H Distribution and characterization of sulfated proteoglycans in the trabecular tissue of goniodysgenetic glaucoma.  Am J Ophthalmol. 1994;117741- 755Google Scholar
25.
Furuyoshi  NFuruyoshi  MFuta  RGottanka  JLütjen-Drecoll  E Ultrastructural changes in the trabecular meshwork of juvenile glaucoma.  Ophthalmologica. 1997;211140- 146Google ScholarCrossref
26.
Rohen  JW Why is intraocular pressure elevated in chronic simple glaucoma? anatomical considerations.  Ophthalmology. 1983;90758- 765Google ScholarCrossref
27.
Gottanka  JJohnson  DHMartus  PLütjen-Drecoll  E Severity of optic nerve damage in eyes with POAG is correlated with changes in the trabecular meshwork.  J Glaucoma. 1997;6123- 132Google ScholarCrossref
28.
Rohen  JWLinner  EWitmer  R Electron microscopic studies on the trabecular meshwork in two cases of corticosteroid glaucoma.  Exp Eye Res. 1973;1719- 31Google ScholarCrossref
29.
Johnson  DGottanka  JFlügel  CHoffmann  FFuta  RLütjen-Drecoll  E Ultrastructural changes in the trabecular meshwork of human eyes treated with corticosteroids.  Arch Ophthalmol. 1997;115375- 383Google ScholarCrossref
30.
Morissette  JClepet  CMoisan  S  et al.  Homozygotes carrying an autosomal dominant MYOC mutation do not manifest glaucoma.  Nat Genet. 1998;19319- 321Google ScholarCrossref
31.
Mardin  CYMichels-Rautenstrauss  KÖzbey  SRautenstrauss  BWisse  MNaumann  GOH GLN368STOP mutation in the GLCIA-gene of a German family [abstract].  Invest Ophthalmol Vis Sci. 1999;40S78Google Scholar
Mechanisms of Ophthalmic Disease
July 2000

Myocilin and Glaucoma: A TIGR by the Tail?

Author Affiliations
 

LEONARD A.LEVINMD, PHDFrom the Mayo Clinic, Rochester, Minn.

Arch Ophthalmol. 2000;118(7):974-978. doi:10-1001/pubs.Ophthalmol.-ISSN-0003-9950-118-7-emo90004
Abstract

In 1997, Stone and 14 colleagues from 7 laboratories reported the identification of a gene (TIGR) associated with juvenile open-angle glaucoma (JOAG). Screening of adults with primary open-angle glaucoma (POAG) revealed that about 4% also carried a mutation of the coding region of this gene. The mutations were found through genetic linkage analysis of families with JOAG. Juvenile open-angle glaucoma was a logical starting point in the search for genetic causes of open-angle glaucoma: it shows a strong autosomal-dominant inheritance pattern, occurs at an early age, demonstrates obvious phenotypic signs (dramatic elevation of intraocular pressure and subsequent optic nerve damage), and is likely to be found in multiple generations as parents of affected children are still living. These factors, however, also serve to distinguish it from adult-onset POAG, which generally has a lower intraocular pressure and a less severe course. The discovery of the actual gene represented a true advance over previous studies that had mapped the gene to a segment of a chromosome but did not identify the specific gene. How the mutant gene causes glaucoma is unknown and is the subject of intense research. To date, 26 mutations in the TIGR gene sequence (the term TIGR has been replaced by the term myocilin, abbreviated MYOC) have been described, all associated with either JOAG or adult-onset POAG. A correlation between specific mutations in MYOC and the clinical course of glaucoma has been found. Not all cases of JOAG or POAG have mutations in the MYOC gene, however, indicating that more discoveries of other genes are yet to come.

×