[Skip to Navigation]
Sign In
Figure 1. 
Locations of sampling points for retinal eccentricities (distances from the foveal center) from 100 µm to 15 mm.

Locations of sampling points for retinal eccentricities (distances from the foveal center) from 100 µm to 15 mm.

Figure 2. 
Locations of sampling points for retinal eccentricities up to 15 mm.

Locations of sampling points for retinal eccentricities up to 15 mm.

Figure 3. 
Retinas with diabetic retinopathy labeled with the terminal deoxynucleotidyl transferase–mediated biotin-deoxyuridine triphosphate nick end labeling (TUNEL) method for identifying dying cells (possibly by apoptosis). A, Radial section from subject D6 (Table 1). One positively stained cell is seen in the outer nuclear layer (arrow, brown reaction product) (bar = 20 µm). B, Higher magnification of a cell labeled with the TUNEL method in the outer nuclear layer of another diabetic retina (arrow) (subject D1, Table 1). C, Ectopic nucleus labeled with the TUNEL method located sclerad to the external limiting membrane (arrow) (subject D1, Table 1) (bar = 10 µm) (same magnification as part B).

Retinas with diabetic retinopathy labeled with the terminal deoxynucleotidyl transferase–mediated biotin-deoxyuridine triphosphate nick end labeling (TUNEL) method for identifying dying cells (possibly by apoptosis). A, Radial section from subject D6 (Table 1). One positively stained cell is seen in the outer nuclear layer (arrow, brown reaction product) (bar = 20 µm). B, Higher magnification of a cell labeled with the TUNEL method in the outer nuclear layer of another diabetic retina (arrow) (subject D1, Table 1). C, Ectopic nucleus labeled with the TUNEL method located sclerad to the external limiting membrane (arrow) (subject D1, Table 1) (bar = 10 µm) (same magnification as part B).

Figure 4. 
Tangential sections at the level of the photoreceptor inner segments located 10 to 20 arc degrees from the fovea. Enzyme histochemical reaction for carbonic anhydrase (CA) produces a black reaction product, which labels the dominant L/M-cones. A, Section from a 68-year-old woman with no known history of ocular disease (control C5, Table 1). Roughly 9% of the cones are blue sensitive (arrows, negative for CA). B, Section from a similar area in another 68-year-old woman with proliferative diabetic retinopathy treated with laser photocoagulation (D5, Table 1). Fewer CA-negative cones are present. There are also fewer rods than in the control section. C, Another section from the same subject as in frame B showing a focal area with marked reduction in rods. The L/M-cone density is essentially unchanged. D, Section from another diabetic retina (D6, Table 1). Note the lack of S-cones, decreased density of rods and poorly defined cone sheaths (toluidine blue counterstain, bar = 10 µm).

Tangential sections at the level of the photoreceptor inner segments located 10 to 20 arc degrees from the fovea. Enzyme histochemical reaction for carbonic anhydrase (CA) produces a black reaction product, which labels the dominant L/M-cones. A, Section from a 68-year-old woman with no known history of ocular disease (control C5, Table 1). Roughly 9% of the cones are blue sensitive (arrows, negative for CA). B, Section from a similar area in another 68-year-old woman with proliferative diabetic retinopathy treated with laser photocoagulation (D5, Table 1). Fewer CA-negative cones are present. There are also fewer rods than in the control section. C, Another section from the same subject as in frame B showing a focal area with marked reduction in rods. The L/M-cone density is essentially unchanged. D, Section from another diabetic retina (D6, Table 1). Note the lack of S-cones, decreased density of rods and poorly defined cone sheaths (toluidine blue counterstain, bar = 10 µm).

Figure 5. 
Topographic (2-dimensional) plots showing the percentage of cones that are S-cones (negative for carbonic anhydrase) vs retinal eccentricity for the maculae of all of the control eyes (left) and all of the diabetic eyes (right). There is a generalized reduction of the percentage of S-cones in all directions for the diabetic retinas.

Topographic (2-dimensional) plots showing the percentage of cones that are S-cones (negative for carbonic anhydrase) vs retinal eccentricity for the maculae of all of the control eyes (left) and all of the diabetic eyes (right). There is a generalized reduction of the percentage of S-cones in all directions for the diabetic retinas.

Figure 6. 
Plots similar to those in Figure 5 for 2 individual diabetic retinas (subjects D1 and D3, Table 1). The distribution pattern is somewhat more irregular than the means plotted in Figure 5.

Plots similar to those in Figure 5 for 2 individual diabetic retinas (subjects D1 and D3, Table 1). The distribution pattern is somewhat more irregular than the means plotted in Figure 5.

Figure 7. 
Density of S-cones as a function of retinal eccentricity ± SEM. An analysis of variance was used to examine whether S-cone density at various eccentricities differed between diabetic and control subjects. Eccentricity, a repeated-measures variable, was evaluated with Huynh-Feldt adjustments to the degrees of freedom to correct for correlated repeated measures. A type IV sum-of-squares error term was used owing to missing data at some eccentricities. S-cone densities differed significantly with eccentricity (F1,8.92 = 32.05, P<.01). There was no overall difference in densities between the groups (F1,2 = 10.89. P= .08). However, there was a significant difference between groups in S-cone density with eccentricity (F1,8.92 = 3.89, P<.005). Asterisks indicate that the difference in means are significant (P<.05) by independent samples t tests assuming unequal variances and evaluated using a 1-tailed probability distribution due to the constraint that diabetic L/M-cone densities cannot exceed control values. The diabetic retinas show a significantly lower mean S-cone density at most eccentricities.

Density of S-cones as a function of retinal eccentricity ± SEM. An analysis of variance was used to examine whether S-cone density at various eccentricities differed between diabetic and control subjects. Eccentricity, a repeated-measures variable, was evaluated with Huynh-Feldt adjustments to the degrees of freedom to correct for correlated repeated measures. A type IV sum-of-squares error term was used owing to missing data at some eccentricities. S-cone densities differed significantly with eccentricity (F1,8.92 = 32.05, P<.01). There was no overall difference in densities between the groups (F1,2 = 10.89. P= .08). However, there was a significant difference between groups in S-cone density with eccentricity (F1,8.92 = 3.89, P<.005). Asterisks indicate that the difference in means are significant (P<.05) by independent samples t tests assuming unequal variances and evaluated using a 1-tailed probability distribution due to the constraint that diabetic L/M-cone densities cannot exceed control values. The diabetic retinas show a significantly lower mean S-cone density at most eccentricities.

Figure 8. 
Density of L/M-cones as a function of retinal eccentricity ± SEM. These data were analyzed using the same analysis of variance design used for analyzing short (S) cones. Although densities change significantly with eccentricity (F1,2.54 = 109.05, P<.001), there is no difference between groups (F1,10 = 1.95, P>.19), nor do groups differ significantly by eccentricity (F1,2.54 = 0.41, P>.71) Findings from the t tests performed for S-cones density data (Figure 7) were significant (asterisk) for only 1 of 13 tests.

Density of L/M-cones as a function of retinal eccentricity ± SEM. These data were analyzed using the same analysis of variance design used for analyzing short (S) cones. Although densities change significantly with eccentricity (F1,2.54 = 109.05, P<.001), there is no difference between groups (F1,10 = 1.95, P>.19), nor do groups differ significantly by eccentricity (F1,2.54 = 0.41, P>.71) Findings from the t tests performed for S-cones density data (Figure 7) were significant (asterisk) for only 1 of 13 tests.

Figure 9. 
Percentage of cones that are blue sensitive as a function of retinal eccentricity (means for all directions) extending to 15 mm ± SEM. A greater number of missing cells from the joint occurrence of the S and L/M-cone density data sets precluded performing an analysis of variance. Independent groups' t tests were performed for the density data in Figure 7 and Figure 8; however, a 2-tailed test was used since the relative percentage of S-cones is not constrained and could increase if there were a decrease in L/M-cones. In patients with diabetes, most eccentricities have a significantly lower mean percentage of S-cones compared with the controls (asterisks). Note scale change at 2 mm eccentricity.

Percentage of cones that are blue sensitive as a function of retinal eccentricity (means for all directions) extending to 15 mm ± SEM. A greater number of missing cells from the joint occurrence of the S and L/M-cone density data sets precluded performing an analysis of variance. Independent groups' t tests were performed for the density data in Figure 7 and Figure 8; however, a 2-tailed test was used since the relative percentage of S-cones is not constrained and could increase if there were a decrease in L/M-cones. In patients with diabetes, most eccentricities have a significantly lower mean percentage of S-cones compared with the controls (asterisks). Note scale change at 2 mm eccentricity.

Clinical Background of Subjects and Controls*
Clinical Background of Subjects and Controls*
1.
Koliopoulos  JTheodosiasdis  G Retinal detachment and acquired colour vision disturbance.  Mod Probl Ophthalmol. 1972;11117- 121Google Scholar
2.
Drum  BArmaly  MFHuppert  WE Sources of short wavelength sensitivity loss in glaucoma.  Doc Ophthalmol Proc Ser. 1987;46413- 422Google Scholar
3.
Gastaud  PVola  JSaracco  JBde Galleani  BCostet  C Diabetic dyschromatopsia: pathogenic hypothesis.  Doc Ophthalmol Proc Ser. 1987;46387- 390Google Scholar
4.
Hood  DCBenimoff  WIGreenstein  VC The response range of the blue-cone pathways: a source of vulnerability to disease.  Invest Ophthalmol Vis Sci. 1984;25864- 867Google Scholar
5.
Gündüz  KArden  GBPerry  SWeinstein  GWHitchings  RA Color vision defects in ocular hypertension and glaucoma: quantification with a computer-driven color television system.  Arch Ophthalmol. 1988;106929- 935Google ScholarCrossref
6.
Mollon  JD What is odd about the short-wavelength mechanism and why is it disproportionately vulnerable to acquired damage? report of a discussion.  Doc Ophthalmol Proc Ser. 1983;33145- 149Google Scholar
7.
Farnsworth  D Tritanomalous vision as a threshold function.  Farbe. 1955;4185- 197Google Scholar
8.
Greenstein  VHood  DCCampbell  CJ The use of a flash-on-flash paradigm to assess sensitivity changes due to retinal disease.  Invest Ophthalmol Vis Sci. 1982;23102- 112Google Scholar
9.
Osterberg  GA Topology of the layer of rods and cones in the human retina.  Acta Ophthalmol Suppl. 1935;61- 103Google Scholar
10.
Marc  RESperling  HG Chromatic organization of primate cones.  Science. 1977;196454- 456Google ScholarCrossref
11.
Sperling  HGJohnson  CHarwerth  RS Differential spectral photic damage to primate cones.  Vision Res. 1980;201117- 1125Google ScholarCrossref
12.
de Monasterio  FMSchein  SJMcCrane  EP Staining of blue-sensitive cones of the macaque retina by a fluorescent dye.  Science. 1981;2131278- 1281Google ScholarCrossref
13.
de Monasterio  FMMcCrane  EPNewlander  JKSchein  SJ Density profile of blue-sensitive cones along the horizontal meridian of macaque retina.  Invest Ophthalmol Vis Sci. 1985;26289- 302Google Scholar
14.
Ahnelt  PKKolb  HPflug  R Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina.  J Comp Neurol. 1987;25518- 34Google ScholarCrossref
15.
Nork  TMMcCormick  SAChao  GMOdom  JV Distribution of carbonic anhydrase among human photoreceptors.  Invest Ophthalmol Vis Sci. 1990;311451- 1458Google Scholar
16.
Hart  WMJBurde  RM Three-dimensional topography of the central visual field: sparing of foveal sensitivity in macular disease.  Ophthalmology. 1983;901028- 1038Google ScholarCrossref
17.
Hart  WMJ Color contrast perimetry: hue discrimination defects in acquired dyschromatopsias.  Doc Ophthalmol Proc Ser. 1987;46267- 273Google Scholar
18.
Hart  WMJ Acquired dyschromatopsias.  Surv Ophthalmol. 1987;3210- 31Google ScholarCrossref
19.
Hurvich  LMJameson  D Some quantitative aspects of an opponent-colors theory, II: brightness, saturation, and hue in normal and dichromatic vision.  J Opt Soc Am. 1955;45602- 616Google ScholarCrossref
20.
Derrington  AMKrauskopf  JLennie  P Chromatic mechanisms in lateral geniculate nucleus of macaque.  J Physiol (Lond). 1984;357241- 265Google Scholar
21.
Kaiser  PKBoynton  RM Human Color Vision. 2nd ed. Washington, DC Optical Society of America1996;250- 253
22.
Nathans  JThomas  DHogness  DS Molecular genetics of human color vision: the genes encoding blue, green and red pigments.  Science. 1986;232193- 202Google ScholarCrossref
23.
Szél  ÁTakács  LMonostori  ÉDiamantstein  TVigh-Teichmann  IRöhlich  P Monoclonal antibody-recognizing cone visual pigment.  Exp Eye Res. 1986;43871- 883Google ScholarCrossref
24.
Johnson  LVHageman  GS Characterization of molecules bound by the cone photoreceptor-specific monoclonal antibody CSA-1.  Invest Ophthalmol Vis Sci. 1988;29550- 557Google Scholar
25.
Nork  TMMangini  NJMillecchia  LL Rods and cones contain antigenically distinctive S-antigens.  Invest Ophthalmol Vis Sci. 1993;342918- 2925Google Scholar
26.
Nork  TMMillecchia  LLStrickland  BDLinberg  JVChao  GM Selective loss of blue cones and rods in human retinal detachment.  Arch Ophthalmol. 1995;1131066- 1073Google ScholarCrossref
27.
Nork  TM Acquired color vision loss and a possible mechanism of ganglion cell death in glaucoma.  Trans Am Ophthalmol Soc. Google Scholar
28.
Nork  TMVer Hoeve  JNPoulsen  GL  et al.  Swelling and loss of photoreceptors in chronic human and experimental glaucomas.  Arch Ophthalmol. 2000;118235- 245Google ScholarCrossref
29.
Diabetic Retinopathy Study Research Group, Photocoagulation treatment of diabetic retinopathy: clinical application of diabetic retinopathy study (DRS) findings: DRS-report No. 8.  Ophthalmology. 1981;88583- 600Google ScholarCrossref
30.
Verriest  G Further studies on acquired deficiency of color discrimination.  J Opt Soc Am. 1963;53185- 195Google ScholarCrossref
31.
Adams  AJZisman  FAi  EBresnick  G Macular edema reduces B cone sensitivity in diabetics.  Appl Opt. 1987;261455- 1457Google ScholarCrossref
32.
Greenstein  VCHood  DCRitch  RSteinberger  DCarr  RE S-(blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma.  Invest Ophthalmol Vis Sci. 1989;301732- 1737Google Scholar
33.
Greenstein  VCSarter  BHood  DNoble  KCarr  R Hue discrimination and S-cone pathway sensitivity in early diabetic retinopathy.  Invest Ophthalmol Vis Sci. 1990;311008- 1014Google Scholar
34.
Greenstein  VCShapiro  AHood  DCZaidi  Q Chromatic and luminance sensitivity in diabetes and glaucoma.  J Opt Soc Am A. 1993;101785- 1791Google ScholarCrossref
35.
Mantyjarvi  M Colour vision and dark adaptation in diabetic patients after photocoagulation.  Acta Ophthalmol (Copenh). 1989;67113- 118Google ScholarCrossref
36.
Greenstein  VCThomas  SRBlaustein  HKoenig  KCarr  RE Effects of early diabetic retinopathy on rod system sensitivity.  Optom Vis Sci. 1993;7018- 23Google ScholarCrossref
37.
Kinnear  PRAspinall  PALakowski  R The diabetic eye and colour vision.  Trans Ophthalmol Soc U K. 1972;9269- 78Google Scholar
38.
Lakowski  RAspinall  PAKinnear  PR Association between colour vision losses and diabetes mellitus.  Opthalmol Res. 1973;4145- 149Google ScholarCrossref
39.
Adams  AJ Chromatic and luminosity processing in retinal disease.  Am J Optom Physiol Opt. 1982;59954- 960Google ScholarCrossref
40.
Zisman  FAdams  AJ Spectral sensitivity of cone mechanisms in juvenile diabetics.  Doc Ophthalmol Proc Ser. 1983;33127- 131Google Scholar
41.
Roy  MSGunkel  RDPodgor  MJ Color vision defects in early diabetic retinopathy.  Arch Ophthalmol. 1986;104225- 228Google ScholarCrossref
42.
Moloney  JDrury  MI Retinopathy and retinal function in insulin-dependent diabetes mellitus.  Br J Ophthalmol. 1982;66759- 761Google ScholarCrossref
43.
Bresnick  GHCondit  RSPalta  MKorth  KGroo  ASyrjala  S Association of hue discrimination loss and diabetic retinopathy.  Arch Ophthalmol. 1985;1031317- 1324Google ScholarCrossref
44.
Birch-Cox  J Defective colour vision in diabetic retinopathy before and after laser photocoagulation.  Mod Probl Ophthalmol. 1978;19326- 329Google Scholar
45.
Rockett  MAnderle  DBessman  AN Blue-yellow vision defects in patients with diabetes.  West J Med. 1987;146431- 433Google Scholar
46.
Birch  J Colour vision changes following different types and amounts of argon laser photocoagulation in the treatment of diabetic retinopathy.  Doc Ophthalmol Proc Ser. 1987;4631- 36Google Scholar
47.
Lutze  MBresnick  GH Lenses of diabetic patients "yellow" at an accelerated rate similar to older normals.  Invest Ophthalmol Vis Sci. 1991;32194- 199Google Scholar
48.
Terasaki  HHirose  HMiyake  Y S-cone pathway sensitivity in diabetes measured with threshold versus intensity curves on flashed backgrounds.  Invest Ophthalmol Vis Sci. 1996;37680- 684Google Scholar
49.
Tregear  SJKnowles  PJRipley  LGCasswell  AG Chromatic-contrast threshold impairment in diabetes.  Eye. 1997;11537- 546Google ScholarCrossref
50.
Greenstein  VCShapiro  AZaidi  QHood  DC Psychophysical evidence for post-receptoral sensitivity loss in diabetics.  Invest Ophthalmol Vis Sci. 1992;332781- 2790Google Scholar
51.
Holopigian  KGreenstein  VCSeiple  WHood  DCCarr  RE Evidence for photoreceptor changes in patients with diabetic retinopathy.  Invest Ophthalmol Vis Sci. 1997;382355- 2365Google Scholar
52.
Gavrieli  YSherman  YBen-Sasson  SA Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.  J Cell Biol. 1992;119493- 501Google ScholarCrossref
53.
Chang  GQHao  YWong  F Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice.  Neuron. 1993;11595- 605Google ScholarCrossref
54.
Ridderstrale  Y Intracellular localization of carbonic anhydrase in the frog nephron.  Acta Physiol Scand. 1976;98465- 469Google ScholarCrossref
55.
Hansson  HPJ Histochemical demonstration of carbonic anhydrase activity.  Histochemie. 1967;11112- 128Google ScholarCrossref
56.
Hansson  HPJ Histochemical demonstration of carbonic anhydrase activity in some epithelia noted for active transport.  Acta Physiol Scand. 1968;73427- 434Google ScholarCrossref
57.
Curcio  CASloan  KRMeyers  D Computer methods for sampling, reconstruction, display and analysis of retinal whole mounts.  Vision Res. 1989;29529- 540Google ScholarCrossref
58.
Becker  B Diabetes mellitus and primary open-angle glaucoma: the XXVII Edward Jackson Memorial Lecture.  Am J Ophthalmol. 1971;11- 16Google Scholar
59.
Klein  BEKlein  RJensen  SC Open-angle glaucoma and older-onset diabetes: the Beaver Dam Eye Study.  Ophthalmology. 1994;1011173- 1177Google ScholarCrossref
60.
Mitchell  PSmith  WChey  THealey  PR Open-angle glaucoma and diabetes: the Blue Mountains eye study, Australia.  Ophthalmology. 1997;104712- 718Google ScholarCrossref
61.
Tielsch  JMKatz  JSingh  K  et al.  A population-based evaluation of glaucoma screening: the Baltimore Eye Survey.  Am J Epidemiol. 1991;1341102- 1110Google Scholar
62.
Jonas  JBGrundler  AE Prevalence of diabetes mellitus and arterial hypertension in primary and secondary open-angle glaucomas.  Graefes Arch Clin Exp Ophthalmol. 1998;236202- 206Google ScholarCrossref
63.
Garcia-Valenzuela  EGorczyca  WDarzynkiewicz  ZSharma  SC Apoptosis in adult retinal ganglion cells after axotomy.  J Neurobiol. 1994;25431- 438Google ScholarCrossref
64.
Didenko  VVHornsby  PJ Presence of double-strand breaks with single-base 3' overhangs in cells undergoing apoptosis but not necrosis.  J Cell Biol. 1996;1351369- 1376Google ScholarCrossref
65.
Hidayat  AAFine  BS Diabetic choroidopathy: light and electron microscopic observations of seven cases.  Ophthalmology. 1985;92512- 522Google ScholarCrossref
66.
Cao  JMcLeod  SMerges  CALutty  GA Choriocapillaris degeneration and related pathologic changes in human diabetic eyes.  Arch Ophthalmol. 1998;116589- 597Google ScholarCrossref
67.
Kurtenbach  ARüttiger  LSchiefer  UZrenner  ENeu  A Heterochromatic brightness matching and wavelength discrimination in juvenile diabetics: a three-year study. Drum  Bed Colour Vision Deficiencies XII Dordrecht, the Netherlands Kluwer Academic Publishers1995;47- 52Google Scholar
68.
Hardy  KJLipton  JScase  MOFoster  DHScarpello  JH Detection of colour vision abnormalities in uncomplicated type 1 diabetic patients with angiographically normal retinas.  Br J Ophthalmol. 1992;76461- 464Google ScholarCrossref
69.
Kurtenbach  ASchiefer  UNeu  AZrenner  E Preretinopic changes in the colour vision of juvenile diabetics.  Br J Ophthalmol. 1999;8343- 46Google ScholarCrossref
Laboratory Sciences
October 2000

Selective Loss of S-Cones in Diabetic Retinopathy

Author Affiliations

From the Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison (Drs Cho, Ver Hoeve, and Nork and Ms Poulsen), and the Department of Ophthalmology, Chonbuk National University Medical School, Chonju, Korea (Dr Cho).

Arch Ophthalmol. 2000;118(10):1393-1400. doi:10.1001/archopht.118.10.1393
Abstract

Objective  To determine whether selective cone loss could explain the acquired tritan-like color confusion found in diabetic retinopathy.

Methods  Terminal deoxynucleotidyl transferase–mediated biotin-deoxyuridine triphosphate nick end labeling (TUNEL) was employed on paraffin sections of retinas from 5 donors with diabetic retinopathy. For quantitative analysis, postmortem retinas were obtained from 13 human donors; 7 from patients with various durations and stages of diabetic retinopathy (4 background, 3 proliferative) and 6 controls. Enzyme histochemical analysis for carbonic anhydrase (CA) was used to distinguish L/M-cones (positive for CA) from S-cones (negative for CA). Cone topography was determined by sampling 360° from 0.1 to 1.5 mm of foveal eccentricity and along the horizontal meridians from 1.5 to 15.0 mm.

Results  Rare cells in both the inner and outer nuclear layers of the diabetic eyes were positively labeled with the TUNEL method. The CA staining revealed incomplete and patchy losses of S-cones that were limited to the diabetic retinas. Statistically significant reduction in the density of S-cones was found at nearly all foveal eccentricities from 0.1 mm to 15.0 mm. This was not the case for the L/M-cones. On average, for all locations, the percentage of S-cones compared with L/M-cones was decreased by 21.0% ± 3.4% with respect to the controls.

Conclusion  The S-cones selectively die in diabetic retinopathy.

Clinical Relevance  Selective loss of S-cones may contribute to the tritan-like color vision deficit seen in patients with diabetic retinopathy.

ACQUIRED COLOR vision loss associated with retinal degenerative disorders usually results in color confusion along a blue-yellow axis, producing a tritan-like defect. At least 5 possible mechanisms have been proposed to explain this phenomenon.

  • Filtering of the shorter wavelengths by the optical media. Brunescent cataracts and, perhaps, old vitreous or intraretinal blood would fall into this category, as would yellowish subretinal fluid and migration of retinal pigment epithelial cells into the retina.1-3

  • Paucity of S-cones (short wavelength–sensitive cones or blue cones). In humans, only about 9% of the cones are blue sensitive. If one assumes a linear system, loss of equal percentages of all 3 cone types would not necessarily produce a specific color confusion axis.4 However, because the S-cones are present in such small numbers, the loss of even a small percentage might cause considerable gaps in their matrix, which could be relatively more important than the loss of an equal percentage of L- or M-cones (long and medium wavelength–sensitive cones, or red and green cones, respectively).5,6

  • Limited response range of the S-cones. It has been observed that the luminance response range of the S-cones is narrower than for the L- and M-cones.4,7,8 If a disease were to result in the response ranges decreasing proportionately for all 3 types, the S-cones might saturate while the L- and M-cones would maintain some sensitivity.

  • Heterogeneity in effect of retinal disease. The L/M-cones increase in density with decreasing foveal eccentricities; achieving a sharp maximum in the foveal center.9 The S-cones reach their greatest density within 1 or 2 arc degrees eccentricity from the foveal center. With smaller eccentricities, their numbers fall precipitously and they may even be absent within 8 arc minutes of the center.9-15 If retinal disease were to preferentially affect the parafoveal region (where S-cones are at their greatest concentration) and spare the fovea itself, a much greater percentage of S-cones would be injured. Tritan-like color confusion would then result.16-18

  • Selective cone fragility. The blue-sensitive cones (or their associated higher order neurons) might simply be more susceptible to stress than the L- or M-cones. Such a hypothesis is not unreasonable considering the fundamental biochemical and genetic differences that exist between S-cones and L/M-cones. Alternatively, it may be the L/M-cones that are more easily damaged. If the L- and M-cones are affected almost equally, then according to the concept of color opponency, tritan-like confusion would ensue since the sum of equal red and green stimuli produces the sensation of yellow.19-21 That the L- and M-cones should be affected nearly equally by various retinal disease processes is not an unreasonable assumption considering that 96% of the amino acid sequences of their opsins are homologous compared with only a 43% identity with S-cone opsin.22 Other biochemical similarities are suggested by their common histochemical staining patterns with opsin antibodies23,24 and with antibodies to the various S-antigen isoforms.25

Previous work in our laboratory has shown that the latter mechanism, selective S-cone fragility, is strongly evident in the case of both human traumatic retinal detachment26 and experimental retinal detachment in the rhesus monkey.27 It is the L- and M-cones that are selectively (and probably equally) injured in glaucoma.28

A range of disorders is ophthalmoscopically evident in diabetic retinopathy. Mild or background changes include capillary microaneurysms, hard exudates, small intraretinal hemorrhages, and cotton-wool spots (swellings of the axons of the nerve fiber layer). More advanced or preproliferative defects are composed of capillary dropout and intraretinal microangiopathy. Finally, severe abnormalities such as extraretinal neovascularization, periretinal membrane formation with retinal traction detachment, and vitreous hemorrhages are seen in the proliferative form of the disease. Panretinal laser photocoagulation has been found to be of benefit in preventing visual loss in many patients with proliferative changes.29

As with other retinal degenerative processes, the characteristic pattern of color vision loss in diabetic retinopathy is of the tritan-like or Verriest Type III.30 This selectivity of damage for the S-cone pathway was further demonstrated by Adams et al31 who measured the spectral sensitivities for each of 3 cone pathways in patients with diabetic macular edema. They found that the blue pathway was 40 times less sensitive than normal controls compared with the L- and M-pathways that were only 2.2 times less sensitive. More recently, Greenstein et al32-34 have carefully measured S-cone pathway sensitivity using an increment threshold technique and found the S-cone pathway to be specifically affected in diabetes. The L- and M-cone pathways showed less sensitivity loss. The rods seem to be less sensitive in diabetes as well.35,36

Tritan-like defects have been found in all stages of diabetic retinopathy. Kinnear et al37 and Lakowski et al38 studied 549 patients with diabetes, most of whom had mild or no apparent retinopathy, and found that, despite normal visual acuity in most patients, color vision loss was common. More recent studies have confirmed the presence of type III loss even in patients with ophthalmoscopically absent or minimal retinopathy.37,39-41 Some controversy exists as to the correlation of the color defect with severity of the retinopathy. Kinnear et al37 found that at all ages studied (group averages of 25 to 65 years old in 10-year increments), the color vision loss was worse in those subjects with at least some retinopathy. Moloney and Drury42 studied 66 young patients with diabetes (mean age, 27.7 years) and did not observe a relationship between stage of the disease and magnitude of the color vision loss. Bresnick et al,43 on the other hand, examined 90 patients with diabetes (young and old) and concluded that the magnitude of the acquired tritan-like discrimination loss was correlated significantly with both the severity of the overall diabetic retinopathy and the severity of macular edema and hard exudate formation. An independent risk factor for tritan-like color vision loss seems to be the application of panretinal laser photocoagulation,44-46 even though the macula is avoided in this treatment.

A question has arisen as to whether the tritan-like deficit in diabetes is prereceptoral, receptoral, or postreceptoral. In support of a prereceptoral mechanism, Lutze and Bresnick47 found that the lenses in patients with diabetes "yellow" at an accelerated rate. However, they later found that when correcting for these lens changes, areas of reduced S-cone system sensitivity were present. Using blue test spots on a bright yellow background, Terasaki et al48 concluded that the pattern of sensitivity loss cannot be caused by changes in preretinal screening. Even so, Tregear et al49 employed chromatic contrast threshold testing and concluded that the specific tritan deficits seen in patients with diabetes can be explained by lens yellowing rather than by selective damage to the S-cone system. Further complicating matters, Greenstein et al50 found psychophysical evidence for postreceptoral sensitivity loss in patients with diabetes. Holopigian et al51 used 2-color dark-adapted thresholds as well as electrophysiologic testing and concluded that there were rod and cone receptoral as well as postreceptoral deficits.

Considering our previous results showing selective loss of S-cones in human retinal detachment,26 we wanted to determine if a similar pathogenic mechanism was involved in diabetic retinopathy, which might explain the observed color vision loss in this disease. Two methods were used to accomplish this goal. First, to allow a qualitative assessment of cell death, retinal tissue was labeled using the terminal deoxynucleotidyl transferase (TdT)–mediated biotin-deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) method. Second, a quantitative analysis comparing densities of S-cones as well as L/M-cones was conducted. Because of the great biochemical similarity of the L/M-cones, no convenient method has been developed to distinguish these 2 cone types in postmortem tissue. However, the technique of enzyme histochemical analysis for carbonic anhydrase (CA) described in the "Subjects, Materials, and Methods" section is a rapid method for distinguishing the S-cones (negative for CA) from the L/M-cones (positive for CA) in human eyes, so long as too much autolysis has not occurred.

Subjects, materials, and methods

The experiments described in this section followed the tenets of the Declaration of Helsinki and were approved by the institutional review board of the University of Wisconsin Medical School.

Tunel method

Portions of 5 retinas from 5 subjects with varying degrees of diabetic retinopathy (subjects D1, D5, and D7 [Table 1] plus 2 additional eyes from 2 subjects that were not used for the quantitative study described here) and 1 postmortem control eye (without known retinal disease) were embedded in paraffin. Putatively apoptotic nuclei were labeled by the TUNEL method.52,53 Paraffin sections (4 µm thick) were mounted on slides treated with adhesive (Vectabond; Vector Laboratories Inc, Burlingame, Calif), deparaffinized, and rehydrated with distilled water. All sections were digested with proteinase K and blocked for endogenous peroxidase. Terminal deoxynucleotidyl transferase was used to incorporate biotinylated dUTP at the sites of DNA breakdown. Biotinylated dUTP was visualized with streptavidin and diaminobenzidine. Rat small intestine with and without deoxyribonuclease added before incubation in TdT and biotin dUTP served as positive controls for the TUNEL method. Negative controls for the TUNEL method were incubated without biotinylated dUTP.

Labeling of l/m-cones for carbonic anhydrase

Postmortem retinas were obtained from 13 human donors; 7 from patients with various durations and stages of diabetic retinopathy (cases D1-D7, Table 1) and 6 controls. The tissue was fixed in 4% phosphate-buffered paraformaldehyde (pH 7.2) for 24 to 48 hours at 4°C and then stored in 1% phosphate buffer (pH 7.4) at 4°C. Representative pieces of retina were removed and embedded in glycol methacrylate (GMA) (JB-4 Polysciences Inc, Warrington, Penn). To preserve enzyme activity, the tissue was embedded directly in GMA without the usual dehydration in graded alcohols. Instead, the specimens were gently agitated in graded concentrations of GMA monomer with benzoyl peroxide catalyst and distilled water, beginning with a 1:1 mixture. Polymerization was carried out at 0°C for 16 hours. Sections were cut 2 µm thick with the tissue oriented either radially or tangentially to the plane of the retina and reacted for CA according to a modified version15,54 of the Hansson method.55,56 This involved floating the tissue sections on the surface of a reacting medium consisting of 0.00715 mol/L of cobalt sulfate, 0.0526 mol/L of sulfuric acid, 0.0117 mol/L of potassium phosphate, and 0.157 mol/L of sodium bicarbonate for 4 to 8 minutes. The sections were rinsed by floating them on a 0.5 % solution of ammonium sulfide for 1 minute and rinsing again on distilled water. They were mounted on glass slides and counterstained with toluidine blue.

Quantitative analysis

The tissue sections were viewed with a microscope (Olympus BH-2; Olympus Corp, Lake Success, NY) and a digital camera (Sony 3-chip charge-coupled device [3CCD], Model DXC 960 MD; Sony Medical Systems, Montvale, NY). The digital image was then captured, and densities of the 2 cone types (positive and negative for CA) were measured using image analysis software (Optimas; Media Cybernetics LP, Bothell, Wash).

The location of any point on the retina can be specified by 2 coordinates; the distance from the fovea and the degree from the temporal meridian (ie, the 3-o'clock meridian for left eyes, the 9-o'clock meridian for right eyes). At 100 µm, 1 point was sampled every 45.0° (8 points); at 150 µm, every 30.0° (12 points); and at 200 µm, every 22.5° (16 points). Beyond 200 µm up to 1.5 mm, data were collected every 45.0° (8 points) at 200-µm intervals (Figure 1). A modification of the method of Curcio et al57 was used to create a smooth tessellation of the central retina, producing 2-dimensional topographical maps.

A method similar to that described by de Monasterio et al13 was employed for the peripheral retina. Cone topography was determined by sampling 360° (as described in the preceding paragraph) from 100 to 1500 µm of retinal eccentricity (distance from the foveal center) and then along the horizontal meridians from 3 to 15 mm. Four points were sampled near the horizontal meridian beyond 1.5 mm. All data for each eccentricity, regardless of direction, were then averaged (Figure 2). (The distances as given do not account for tissue shrinkage, which is about 15% for embedment in GMA. To convert millimeters to degrees of retinal eccentricity for the average adult eye, assuming 15% shrinkage, a factor of 3.96° per millimeter should be used.)

It was not possible to include all points at every eccentricity. This was owing primarily to weak staining reaction or to tissue folding. The CA enzyme histochemical reaction is sensitive to autolysis and fixation. In some locations of some eyes, the reaction was too weak to distinguish CA-positive cones from CA-negative cones. Tissue folding during embedding presented occasional problems as well, making it difficult to obtain sections that were flat enough for adequate sampling. The central fovea (0 µm and 50 µm eccentricity) presented its own technical difficulties when this technique was employed. Carbonic anhydrase staining was particularly weak in this region, only yielding usable results in a few eyes. Also, the retina was thinner here so that during fixation and embedding, tissue shrinkage caused the photoreceptor layer to move vitreally, producing a concave outer surface opposite the fovea interna. Because of this, tangential sections through the fovea were generally not flat enough for analysis. Given these problems and the normal paucity of S-cones in the central fovea, statistical comparisons between diabetic retinopathy and control eyes are not meaningful for eccentricities of less than 100 µm with the use of this technique.

Results

Occasional nuclei were found to be positive by the TUNEL method in all 5 diabetic retinas tested but not in the controls. Cells positive for CA were found in both the inner and outer nuclear layers. In one case, a positively labeled nucleus (possibly from a cone)26 was seen that was external to the outer limiting layer (Figure 3).

Unlike the controls, the diabetic eyes showed patchy losses of CA-negative cones and rods (presumably S-cones and rods) (Figure 4). On average, there was reduction in the percentage of S-cones in all directions and at all eccentricities in the maculae of the diabetic eyes compared with the control eyes (Figure 5). However, for individual eyes, these losses were sometimes irregular (Figure 6). A significantly lower density of S-cones was found at nearly all retinal eccentricities from 0.1 to 15.0 mm (Figure 7). By comparison, the mean density of L- and M-cones was significantly reduced at only 1.5 mm (Figure 8).

Since the S-cones normally have a regular distribution with respect to the L/M-cones,13,26 we reasoned that measuring the ratio of the S-cone to L/M-cone densities would be a sensitive measure since, being a ratio, it would compensate for artifacts such as irregular tissue shrinkage during embedding. Thus, as shown in Figure 9, the S-cones as a percentage of all cones were significantly reduced in the diabetic eyes at all but 3 eccentricities. On average, the percentage of S-cones compared with L/M-cones was decreased by 21.0% ± 3.4% (mean ± SEM) in the eyes with diabetic retinopathy compared with controls.

Comment

Selective dropout of S-cones is a consistent finding in diabetic retinopathy. The loss is, on average, distributed rather evenly throughout the macula and along the horizontal meridian, extending at least to 15 mm beyond the fovea. Selective S-cone injury is similar to (although less extensive than) what is seen in retinal detachment26 but contrasts with the L/M-cone damage found in glaucoma.28

An effort was made to select eyes with a range of diabetic retinopathy. However, because complete ocular histories were not available for all patients and because of the small sample size, it was not possible to correlate S-cone loss and severity of disease. Simple inspection of the postmortem retinas with the dissecting microscope is not a substitute for detailed history because diabetic retinopathy can become inactive after several years, leaving little evidence of damage at this level.

Given the limited ocular histories for some of the subjects and especially for the controls, it is important to consider the other retinal diseases that might be common enough to act as confounding variables. The only entity that fits this category is glaucoma. Although macular degeneration is quite common among this age group, even mild forms of the disease are easily identified on inspection of the posterior poles with the dissecting microscope. No such eyes were included in this study. By contrast, glaucoma is often not evident in gross specimens. Moderate cupping of the optic nerve can be obscured by postmortem changes and fixation. Glaucoma is also a concern because it may58-60 (or may not61,62) be more prevalent in patients with diabetes mellitus. Furthermore, glaucoma is now known to affect the photoreceptors in the outer retina.28 Even so, Klein, et al59 found that the difference in the prevalence of glaucoma between patients with older-onset diabetes and those without diabetes was only 2.2% (4.2% vs 2.0%, respectively), so it is unlikely to be a major factor in such a limited sample as ours. More importantly, most of the outer retinal damage in glaucoma seems to be concentrated in the L/M-cones,28 whereas the S-cones were selectively lost in our diabetic eyes.

Findings from the TUNEL method for some of the nuclei in patients with diabetes were consistent with cell death in the inner nuclear as well as the outer nuclear layers in diabetic retinopathy. In such a chronic disease, which can last for years or decades, it is expected that, even if cell death were common, only rare cells would be found positive by the TUNEL method. This is because in cells undergoing death by apoptosis, there is only a relatively brief time interval during which the nuclei may be found positive by the TUNEL method—perhaps as short 1 to 3 hours in normally cycling cells of the intestine, epidermis, lymphoid tissue, etc,52 and 8 to 11 hours for ganglion cells in axotomized rats.63 Finally, positive labeling with TUNEL method alone, though consistent with programmed cell death (apoptosis), does not rule out death by necrosis.64 Nevertheless, positive findings from the TUNEL method in our diabetic retinas and absence of such findings in the control retinas suggest that retinal cell death is occurring in diabetic retinopathy.

Although diabetic retinopathy is sometimes thought of as an inner retinal vasculopathy, loss of photoreceptors indicates damage to the outer retina as well. Outer retinal injury might be predicted, considering the studies showing that choroidal vasculopathy is an important element in this disease.65,66

Partial loss of S-cones could contribute to the color vision deficit in diabetic retinopathy. This does not rule out the possibility that factors in addition to photoreceptor death may be involved as well. Indeed, color vision deficits have been observed even in early diabetic retinopathy,33,48,50,67 including patients with diabetes with angiographically normal retinas.68,69 Unlike the findings of nearly total S-cone loss in human traumatic retinal detachment and experimental retinal detachment in monkeys, only a portion of the S-cones was lost. Therefore, the contribution of other prereceptoral or postreceptoral mechanisms cannot be ruled out.

Accepted for publication July 25, 2000.

This study was supported in part by grant EY08724 from the National Eye Institute, Bethesda, Md, an unrestricted gift from Research to Prevent Blindness Inc, New York, NY, the Steve J. Miller Foundation, Marshfield, Wis, the Wisconsin Lions Eye Research Fund, Stevens Point, and the Glaucoma Research Foundation, San Francisco, Calif (Dr Nork was the recipient of these grants).

The authors thank the Lions Eye Bank of Wisconsin Inc, Madison, and Ingolf H. L. Wallow, MD, for providing the specimens. We also thank Charlene B. Y. Kim, PhD, for her critical review of the manuscript.

Reprints: T. Michael Nork, MD, Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 600 Highland Ave, F4/336, Madison, WI 53792-3220 (e-mail: tmnork@facstaff.wisc.edu).

References
1.
Koliopoulos  JTheodosiasdis  G Retinal detachment and acquired colour vision disturbance.  Mod Probl Ophthalmol. 1972;11117- 121Google Scholar
2.
Drum  BArmaly  MFHuppert  WE Sources of short wavelength sensitivity loss in glaucoma.  Doc Ophthalmol Proc Ser. 1987;46413- 422Google Scholar
3.
Gastaud  PVola  JSaracco  JBde Galleani  BCostet  C Diabetic dyschromatopsia: pathogenic hypothesis.  Doc Ophthalmol Proc Ser. 1987;46387- 390Google Scholar
4.
Hood  DCBenimoff  WIGreenstein  VC The response range of the blue-cone pathways: a source of vulnerability to disease.  Invest Ophthalmol Vis Sci. 1984;25864- 867Google Scholar
5.
Gündüz  KArden  GBPerry  SWeinstein  GWHitchings  RA Color vision defects in ocular hypertension and glaucoma: quantification with a computer-driven color television system.  Arch Ophthalmol. 1988;106929- 935Google ScholarCrossref
6.
Mollon  JD What is odd about the short-wavelength mechanism and why is it disproportionately vulnerable to acquired damage? report of a discussion.  Doc Ophthalmol Proc Ser. 1983;33145- 149Google Scholar
7.
Farnsworth  D Tritanomalous vision as a threshold function.  Farbe. 1955;4185- 197Google Scholar
8.
Greenstein  VHood  DCCampbell  CJ The use of a flash-on-flash paradigm to assess sensitivity changes due to retinal disease.  Invest Ophthalmol Vis Sci. 1982;23102- 112Google Scholar
9.
Osterberg  GA Topology of the layer of rods and cones in the human retina.  Acta Ophthalmol Suppl. 1935;61- 103Google Scholar
10.
Marc  RESperling  HG Chromatic organization of primate cones.  Science. 1977;196454- 456Google ScholarCrossref
11.
Sperling  HGJohnson  CHarwerth  RS Differential spectral photic damage to primate cones.  Vision Res. 1980;201117- 1125Google ScholarCrossref
12.
de Monasterio  FMSchein  SJMcCrane  EP Staining of blue-sensitive cones of the macaque retina by a fluorescent dye.  Science. 1981;2131278- 1281Google ScholarCrossref
13.
de Monasterio  FMMcCrane  EPNewlander  JKSchein  SJ Density profile of blue-sensitive cones along the horizontal meridian of macaque retina.  Invest Ophthalmol Vis Sci. 1985;26289- 302Google Scholar
14.
Ahnelt  PKKolb  HPflug  R Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina.  J Comp Neurol. 1987;25518- 34Google ScholarCrossref
15.
Nork  TMMcCormick  SAChao  GMOdom  JV Distribution of carbonic anhydrase among human photoreceptors.  Invest Ophthalmol Vis Sci. 1990;311451- 1458Google Scholar
16.
Hart  WMJBurde  RM Three-dimensional topography of the central visual field: sparing of foveal sensitivity in macular disease.  Ophthalmology. 1983;901028- 1038Google ScholarCrossref
17.
Hart  WMJ Color contrast perimetry: hue discrimination defects in acquired dyschromatopsias.  Doc Ophthalmol Proc Ser. 1987;46267- 273Google Scholar
18.
Hart  WMJ Acquired dyschromatopsias.  Surv Ophthalmol. 1987;3210- 31Google ScholarCrossref
19.
Hurvich  LMJameson  D Some quantitative aspects of an opponent-colors theory, II: brightness, saturation, and hue in normal and dichromatic vision.  J Opt Soc Am. 1955;45602- 616Google ScholarCrossref
20.
Derrington  AMKrauskopf  JLennie  P Chromatic mechanisms in lateral geniculate nucleus of macaque.  J Physiol (Lond). 1984;357241- 265Google Scholar
21.
Kaiser  PKBoynton  RM Human Color Vision. 2nd ed. Washington, DC Optical Society of America1996;250- 253
22.
Nathans  JThomas  DHogness  DS Molecular genetics of human color vision: the genes encoding blue, green and red pigments.  Science. 1986;232193- 202Google ScholarCrossref
23.
Szél  ÁTakács  LMonostori  ÉDiamantstein  TVigh-Teichmann  IRöhlich  P Monoclonal antibody-recognizing cone visual pigment.  Exp Eye Res. 1986;43871- 883Google ScholarCrossref
24.
Johnson  LVHageman  GS Characterization of molecules bound by the cone photoreceptor-specific monoclonal antibody CSA-1.  Invest Ophthalmol Vis Sci. 1988;29550- 557Google Scholar
25.
Nork  TMMangini  NJMillecchia  LL Rods and cones contain antigenically distinctive S-antigens.  Invest Ophthalmol Vis Sci. 1993;342918- 2925Google Scholar
26.
Nork  TMMillecchia  LLStrickland  BDLinberg  JVChao  GM Selective loss of blue cones and rods in human retinal detachment.  Arch Ophthalmol. 1995;1131066- 1073Google ScholarCrossref
27.
Nork  TM Acquired color vision loss and a possible mechanism of ganglion cell death in glaucoma.  Trans Am Ophthalmol Soc. Google Scholar
28.
Nork  TMVer Hoeve  JNPoulsen  GL  et al.  Swelling and loss of photoreceptors in chronic human and experimental glaucomas.  Arch Ophthalmol. 2000;118235- 245Google ScholarCrossref
29.
Diabetic Retinopathy Study Research Group, Photocoagulation treatment of diabetic retinopathy: clinical application of diabetic retinopathy study (DRS) findings: DRS-report No. 8.  Ophthalmology. 1981;88583- 600Google ScholarCrossref
30.
Verriest  G Further studies on acquired deficiency of color discrimination.  J Opt Soc Am. 1963;53185- 195Google ScholarCrossref
31.
Adams  AJZisman  FAi  EBresnick  G Macular edema reduces B cone sensitivity in diabetics.  Appl Opt. 1987;261455- 1457Google ScholarCrossref
32.
Greenstein  VCHood  DCRitch  RSteinberger  DCarr  RE S-(blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma.  Invest Ophthalmol Vis Sci. 1989;301732- 1737Google Scholar
33.
Greenstein  VCSarter  BHood  DNoble  KCarr  R Hue discrimination and S-cone pathway sensitivity in early diabetic retinopathy.  Invest Ophthalmol Vis Sci. 1990;311008- 1014Google Scholar
34.
Greenstein  VCShapiro  AHood  DCZaidi  Q Chromatic and luminance sensitivity in diabetes and glaucoma.  J Opt Soc Am A. 1993;101785- 1791Google ScholarCrossref
35.
Mantyjarvi  M Colour vision and dark adaptation in diabetic patients after photocoagulation.  Acta Ophthalmol (Copenh). 1989;67113- 118Google ScholarCrossref
36.
Greenstein  VCThomas  SRBlaustein  HKoenig  KCarr  RE Effects of early diabetic retinopathy on rod system sensitivity.  Optom Vis Sci. 1993;7018- 23Google ScholarCrossref
37.
Kinnear  PRAspinall  PALakowski  R The diabetic eye and colour vision.  Trans Ophthalmol Soc U K. 1972;9269- 78Google Scholar
38.
Lakowski  RAspinall  PAKinnear  PR Association between colour vision losses and diabetes mellitus.  Opthalmol Res. 1973;4145- 149Google ScholarCrossref
39.
Adams  AJ Chromatic and luminosity processing in retinal disease.  Am J Optom Physiol Opt. 1982;59954- 960Google ScholarCrossref
40.
Zisman  FAdams  AJ Spectral sensitivity of cone mechanisms in juvenile diabetics.  Doc Ophthalmol Proc Ser. 1983;33127- 131Google Scholar
41.
Roy  MSGunkel  RDPodgor  MJ Color vision defects in early diabetic retinopathy.  Arch Ophthalmol. 1986;104225- 228Google ScholarCrossref
42.
Moloney  JDrury  MI Retinopathy and retinal function in insulin-dependent diabetes mellitus.  Br J Ophthalmol. 1982;66759- 761Google ScholarCrossref
43.
Bresnick  GHCondit  RSPalta  MKorth  KGroo  ASyrjala  S Association of hue discrimination loss and diabetic retinopathy.  Arch Ophthalmol. 1985;1031317- 1324Google ScholarCrossref
44.
Birch-Cox  J Defective colour vision in diabetic retinopathy before and after laser photocoagulation.  Mod Probl Ophthalmol. 1978;19326- 329Google Scholar
45.
Rockett  MAnderle  DBessman  AN Blue-yellow vision defects in patients with diabetes.  West J Med. 1987;146431- 433Google Scholar
46.
Birch  J Colour vision changes following different types and amounts of argon laser photocoagulation in the treatment of diabetic retinopathy.  Doc Ophthalmol Proc Ser. 1987;4631- 36Google Scholar
47.
Lutze  MBresnick  GH Lenses of diabetic patients "yellow" at an accelerated rate similar to older normals.  Invest Ophthalmol Vis Sci. 1991;32194- 199Google Scholar
48.
Terasaki  HHirose  HMiyake  Y S-cone pathway sensitivity in diabetes measured with threshold versus intensity curves on flashed backgrounds.  Invest Ophthalmol Vis Sci. 1996;37680- 684Google Scholar
49.
Tregear  SJKnowles  PJRipley  LGCasswell  AG Chromatic-contrast threshold impairment in diabetes.  Eye. 1997;11537- 546Google ScholarCrossref
50.
Greenstein  VCShapiro  AZaidi  QHood  DC Psychophysical evidence for post-receptoral sensitivity loss in diabetics.  Invest Ophthalmol Vis Sci. 1992;332781- 2790Google Scholar
51.
Holopigian  KGreenstein  VCSeiple  WHood  DCCarr  RE Evidence for photoreceptor changes in patients with diabetic retinopathy.  Invest Ophthalmol Vis Sci. 1997;382355- 2365Google Scholar
52.
Gavrieli  YSherman  YBen-Sasson  SA Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.  J Cell Biol. 1992;119493- 501Google ScholarCrossref
53.
Chang  GQHao  YWong  F Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice.  Neuron. 1993;11595- 605Google ScholarCrossref
54.
Ridderstrale  Y Intracellular localization of carbonic anhydrase in the frog nephron.  Acta Physiol Scand. 1976;98465- 469Google ScholarCrossref
55.
Hansson  HPJ Histochemical demonstration of carbonic anhydrase activity.  Histochemie. 1967;11112- 128Google ScholarCrossref
56.
Hansson  HPJ Histochemical demonstration of carbonic anhydrase activity in some epithelia noted for active transport.  Acta Physiol Scand. 1968;73427- 434Google ScholarCrossref
57.
Curcio  CASloan  KRMeyers  D Computer methods for sampling, reconstruction, display and analysis of retinal whole mounts.  Vision Res. 1989;29529- 540Google ScholarCrossref
58.
Becker  B Diabetes mellitus and primary open-angle glaucoma: the XXVII Edward Jackson Memorial Lecture.  Am J Ophthalmol. 1971;11- 16Google Scholar
59.
Klein  BEKlein  RJensen  SC Open-angle glaucoma and older-onset diabetes: the Beaver Dam Eye Study.  Ophthalmology. 1994;1011173- 1177Google ScholarCrossref
60.
Mitchell  PSmith  WChey  THealey  PR Open-angle glaucoma and diabetes: the Blue Mountains eye study, Australia.  Ophthalmology. 1997;104712- 718Google ScholarCrossref
61.
Tielsch  JMKatz  JSingh  K  et al.  A population-based evaluation of glaucoma screening: the Baltimore Eye Survey.  Am J Epidemiol. 1991;1341102- 1110Google Scholar
62.
Jonas  JBGrundler  AE Prevalence of diabetes mellitus and arterial hypertension in primary and secondary open-angle glaucomas.  Graefes Arch Clin Exp Ophthalmol. 1998;236202- 206Google ScholarCrossref
63.
Garcia-Valenzuela  EGorczyca  WDarzynkiewicz  ZSharma  SC Apoptosis in adult retinal ganglion cells after axotomy.  J Neurobiol. 1994;25431- 438Google ScholarCrossref
64.
Didenko  VVHornsby  PJ Presence of double-strand breaks with single-base 3' overhangs in cells undergoing apoptosis but not necrosis.  J Cell Biol. 1996;1351369- 1376Google ScholarCrossref
65.
Hidayat  AAFine  BS Diabetic choroidopathy: light and electron microscopic observations of seven cases.  Ophthalmology. 1985;92512- 522Google ScholarCrossref
66.
Cao  JMcLeod  SMerges  CALutty  GA Choriocapillaris degeneration and related pathologic changes in human diabetic eyes.  Arch Ophthalmol. 1998;116589- 597Google ScholarCrossref
67.
Kurtenbach  ARüttiger  LSchiefer  UZrenner  ENeu  A Heterochromatic brightness matching and wavelength discrimination in juvenile diabetics: a three-year study. Drum  Bed Colour Vision Deficiencies XII Dordrecht, the Netherlands Kluwer Academic Publishers1995;47- 52Google Scholar
68.
Hardy  KJLipton  JScase  MOFoster  DHScarpello  JH Detection of colour vision abnormalities in uncomplicated type 1 diabetic patients with angiographically normal retinas.  Br J Ophthalmol. 1992;76461- 464Google ScholarCrossref
69.
Kurtenbach  ASchiefer  UNeu  AZrenner  E Preretinopic changes in the colour vision of juvenile diabetics.  Br J Ophthalmol. 1999;8343- 46Google ScholarCrossref
×