Rapid Identification of Germline Mutations in Retinoblastoma by ProteinTruncation Testing | Genetics and Genomics | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Devesa  SS The incidence of retinoblastoma.  Am J Ophthalmol. 1975;80263- 265PubMedGoogle Scholar
2.
Bishop  JOMadson  EC Retinoblastoma: review of the current status.  Surv Ophthalmol. 1975;19342- 366PubMedGoogle Scholar
3.
Gurney  JGSmith  MARoss  JA Cancer among infants. Ries  LAGSmith  MAGurney  JG  et al. eds. Cancer Incidence and Survival Among Children and Adolescents: United StatesSEER Program, 1975-1995 Bethesda, Md National Cancer Institute CancerStatistics Branch1999;149- 156NIH Publication 99-4649Google Scholar
4.
Pendergrass  TWDavis  S Incidence of retinoblastoma in the United States.  Arch Ophthalmol. 1980;981204- 1210PubMedGoogle ScholarCrossref
5.
Wiggs  JLDryja  TP Predicting the risk of hereditary retinoblastoma.  Am J Ophthalmol. 1988;106346- 351PubMedGoogle ScholarCrossref
6.
Wong  FLBoice  JD  JrAbramson  DH  et al.  Cancer incidence after retinoblastoma: radiation dose and sarcoma risk.  JAMA. 1997;2781262- 1267PubMedGoogle ScholarCrossref
7.
Vogel  F Genetics of retinoblastoma.  Hum Genet. 1979;521- 54PubMedGoogle ScholarCrossref
8.
Sippel  KCFraioli  RESmith  GD  et al.  Frequency of somatic and germ-line mosaicism in retinoblastoma: implicationsfor genetic counseling.  Am J Hum Genet. 1998;62610- 619PubMedGoogle ScholarCrossref
9.
Friend  SHBernards  RRogelj  S  et al.  A human DNA segment with properties of the gene that predisposes toretinoblastoma and osteosarcoma.  Nature. 1986;323643- 646PubMedGoogle ScholarCrossref
10.
Lee  WHBookstein  RHong  FYoung  LJShew  JYLee  EY Human retinoblastoma susceptibility gene: cloning, identification,and sequence.  Science. 1987;2351394- 1399PubMedGoogle ScholarCrossref
11.
Fung  YKMurphree  ALT'Ang  AQian  JHinrichs  SHBenedict  WF Structural evidence for the authenticity of the human retinoblastomagene.  Science. 1987;2361657- 1661PubMedGoogle ScholarCrossref
12.
Harbour  JW Overview of RB gene mutations in patients with retinoblastoma: implicationsfor clinical genetic screening.  Ophthalmology. 1998;1051442- 1447PubMedGoogle ScholarCrossref
13.
Zhang  KWang  MXMunier  F  et al.  Molecular genetics of retinoblastoma.  Int Ophthalmol Clin. 1993;3353- 65PubMedGoogle ScholarCrossref
14.
Roest  PARoberts  RGSugino  Svan Ommen  GJden Dunnen  JT Protein truncation test (PTT) for rapid detection of translation-terminatingmutations.  Hum Mol Genet. 1993;21719- 1721PubMedGoogle ScholarCrossref
15.
Den Dunnen  JTVan Ommen  GJ The protein truncation test: a review.  Hum Mutat. 1999;1495- 102PubMedGoogle ScholarCrossref
16.
Chibon  FMairal  AFreneaux  P  et al.  The RB1 gene is the target of chromosome 13 deletions in malignantfibrous histiocytoma.  Cancer Res. 2000;606339- 6345PubMedGoogle Scholar
17.
Rowan  AJBodmer  WF Introduction of a myc reporter tag to improve the quality of mutationdetection using the protein truncation test.  Hum Mutat. 1997;9172- 176PubMedGoogle ScholarCrossref
18.
Fujita  TOhtani-Fujita  NSakai  T  et al.  Low frequency of oncogenic mutations in the core promoter region ofthe RB1 gene.  Hum Mutat. 1999;13410- 411PubMedGoogle ScholarCrossref
19.
Bunin  GREmanuel  BSMeadows  ATBuckley  JDWoods  WGHammond  GD Frequency of 13q abnormalities among 203 patients with retinoblastoma.  J Natl Cancer Inst. 1989;81370- 374PubMedGoogle ScholarCrossref
20.
Zacksenhaus  EBremner  RPhillips  RAGallie  BL A bipartite nuclear localization signal in the retinoblastoma geneproduct and its importance for biological activity.  Mol Cell Biol. 1993;134588- 4599PubMedGoogle Scholar
21.
Zacksenhaus  EJiang  ZHei  YJPhillips  RAGallie  BL Nuclear localization conferred by the pocket domain of the retinoblastomagene product.  Biochim Biophys Acta. 1999;1451288- 296PubMedGoogle ScholarCrossref
22.
Hu  QJDyson  NHarlow  E The regions of the retinoblastoma protein needed for binding to adenovirusE1A or SV40 large T antigen are common sites for mutations.  EMBO J. 1990;91147- 1155PubMedGoogle Scholar
23.
Blanquet  VTurleau  CGross-Morand  MSSénamaud-Beaufort  CDoz  FBesmond  C Spectrum of germline mutations in the RB1 gene: a study of 232 patientswith hereditary and non hereditary retinoblastoma.  Hum Mol Genet. 1995;4383- 388PubMedGoogle ScholarCrossref
24.
Bia  BCowell  JK Independent constitutional germline mutations occurring in the RB1gene in cousins with bilateral retinoblastoma.  Oncogene. 1995;11977- 979PubMedGoogle Scholar
25.
Dryja  TP Assessment of risk for hereditary retinoblastoma. Albert  DMJakobiec  FAAzar  DTGragoudas  ESeds. Principles and Practice of Ophthalmology. 2nd Philadelphia, Pa WB Saunders Co2000;5084- 5095Google Scholar
26.
Noorani  HZKhan  HNGallie  BLDetsky  AS Cost comparison of molecular versus conventional screening of relativesat risk for retinoblastoma.  Am J Hum Genet. 1996;59301- 307PubMedGoogle Scholar
27.
Lohmann  DRBrandt  BHopping  WPassarge  EHorsthemke  B The spectrum of RB1 germ-line mutations in hereditary retinoblastoma.  Am J Hum Genet. 1996;58940- 949PubMedGoogle Scholar
Laboratory Sciences
February 2004

Rapid Identification of Germline Mutations in Retinoblastoma by ProteinTruncation Testing

Author Affiliations

From the Ocular Oncology Unit, Department of Ophthalmology, Universityof California, San Francisco (Drs Tsai, Smith, Gonzalez, Uusitalo, and O'Brienand Mss Fulton and Mueller), and the Department of Ophthalmology, HelsinkiUniversity Central Hospital, Helsinki, Finland (Dr Uusitalo).

Arch Ophthalmol. 2004;122(2):239-248. doi:10.1001/archopht.122.2.239
Abstract

Objective  To demonstrate the utility of protein truncation testing (PTT) for rapiddetection and sequencing of germline mutations in the retinoblastoma tumorsuppressor gene (RB1).

Methods  We performed PTT, a technique based on the in vitro synthesis of proteinfrom amplified RNA, on 27 probands from 27 kindreds with hereditary retinoblastoma.In 4 kindreds, PTT was also performed on 1 additional affected relative. Tenunrelated patients without retinoblastoma were included as negative controlsubjects. All PTT-detected mutations were further analyzed by focused sequencingof genomic DNA. When no mutation was detected by PTT, we performed exon-by-exonsequencing, as well as cytogenetic analysis by Giemsa-trypsin-Giemsa bandingand by fluorescent in situ hybridization for RB1. Theresults of proband testing were used for direct genetic testing by polymerasechain reaction and sequencing in 11 relatives from 7 of the 27 kindreds.

Results  Of the probands tested, 19 (70%) of 27 tested positive for germlinemutations by PTT. In 1 kindred, the proband had negative PTT results but anadditional affected relative had positive PTT results. Focused DNA sequencingof 1 patient with positive PTT results from each of the 20 kindreds with positivePTT results revealed truncating mutations in 19 kindreds. Four demonstratedframeshift deletions, 6 had splice site mutations, and 9 showed nonsense mutations.Further analysis by genomic exon-by-exon sequencing and karyotype analysisof the 8 probands who tested negative for germline mutations by PTT revealed1 splice site mutation, 2 missense mutations, and 1 chromosomal deletion.Focused sequencing based on positive PTT results was successfully used toconfirm shared truncating mutations in additional affected family membersin 2 kindreds. Using a multitiered approach to genetic testing, 23 (85%) of27 kindreds had mutations identified and those detected by PTT received apositive result in as few as 7 days. In control subjects, PTT produced nofalse-positive results.

Conclusions  Protein truncation testing is an effective, rapid single-modality screenfor germline mutations in patients with retinoblastoma. When used as an initialscreen, PTT can increase the yield of additional testing modalities, suchas sequencing and chromosomal analysis, providing a timely and cost-effectiveapproach for the diagnosis of heritable germline mutations in patients withretinoblastoma.

Clinical Relevance  The clinical application of PTT in retinoblastoma will improve detectionof germline retinoblastoma mutations, which will supply critical informationfor prognosis, treatment planning, follow-up care, and genetic counseling.

×