Comparison of Scanning Laser Polarimetry Using Variable Corneal Compensationand Retinal Nerve Fiber Layer Photography for Detection of Glaucoma | Cornea | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Sommer  AKatz  JQuigley  HA  et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatousfield loss.  Arch Ophthalmol. 1991;10977- 83PubMedGoogle ScholarCrossref
Sommer  AMiller  NRPollack  I  et al.  The nerve fiber layer in the diagnosis of glaucoma.  Arch Ophthalmol. 1977;952149- 2156PubMedGoogle Scholar
Quigley  HAKatz  JDerick  RJ  et al.  An evaluation of optic disc and nerve fiber layer examinations in monitoringprogression of early glaucoma damage.  Ophthalmology. 1992;9919- 28PubMedGoogle ScholarCrossref
Quigley  HA Diagnosing Early Glaucoma with Nerve Fiber LayerExamination.  New York, NY Igaku-Shoin1996;
Weinreb  RNDreher  AWColeman  A  et al.  Histopathologic validation of Fourier-ellipsometry measurements ofretinal nerve fiber layer thickness.  Arch Ophthalmol. 1990;108557- 560PubMedGoogle ScholarCrossref
Weinreb  RNZangwill  LBerry  CC  et al.  Detection of glaucoma with scanning laser polarimetry.  Arch Ophthalmol. 1998;1161583- 1589PubMedGoogle ScholarCrossref
Tjon-Fo-Sang  MJLemij  HG The sensitivity and specificity of nerve fiber layer measurements inglaucoma as determined with scanning laser polarimetry.  Am J Ophthalmol. 1997;12362- 69PubMedGoogle Scholar
Weinreb  RNShakiba  SZangwill  L Scanning laser polarimetry to measure the nerve fiber layer of normaland glaucomatous eyes.  Am J Ophthalmol. 1995;119627- 636PubMedGoogle Scholar
Bowd  CZangwill  LMBerry  CC  et al.  Detecting early glaucoma by assessment of retinal nerve fiber layerthickness and visual function.  Invest Ophthalmol Vis Sci. 2001;421993- 2003PubMedGoogle Scholar
Zangwill  LMBowd  CBerry  CC  et al.  Discriminating between normal and glaucomatous eyes using the HeidelbergRetina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph.  Arch Ophthalmol. 119985- 993PubMedGoogle ScholarCrossref
Choplin  NTLundy  DCDreher  AW Differentiating patients with glaucoma from glaucoma suspects and normalsubjects by nerve fiber layer assessment with scanning laser polarimetry.  Ophthalmology. 1998;1052068-- 2076PubMedGoogle ScholarCrossref
Niessen  AGVan Den Berg  TJLangerhorst  CTGreve  EL Retinal nerve fiber layer assessment by scanning laser polarimetryand standardized photography.  Am J Ophthalmol. 1996;121484- 493PubMedGoogle Scholar
Zangwill  LKnauer  SWilliams  JMWeinreb  RN Retinal nerve fiber layer assessment by scanning laser polarimetry,optical coherence tomography and retinal nerve fiber layer photography. Lemij  HGSchuman JS, eds The Shape of Glaucoma:Quantitative Neural Imaging Techniques. The Hague, the NetherlandsKugler Publications2000;Google Scholar
Weinreb  RN Evaluating the retinal nerve fiber layer in glaucoma with scanninglaser polarimetry.  Arch Ophthalmol. 1999;1171403- 1406PubMedGoogle ScholarCrossref
Garway-Heath  DFGreaney  MJCaprioli  J Correction for the erroneous compensation of anterior segment birefringencewith the scanning laser polarimeter for glaucoma diagnosis.  Invest Ophthalmol Vis Sci. 2002;431465- 1474PubMedGoogle Scholar
Greenfield  DSKnighton  RWFeuer  WJ  et al.  Correction for corneal polarization axis improves the discriminatingpower of scanning laser polarimetry.  Am J Ophthalmol. 2002;13427- 33PubMedGoogle ScholarCrossref
Greenfield  DSKnighton  RWHuang  XR Effect of corneal polarization axis on assessment of retinal nervefiber layer thickness by scanning laser polarimetry.  Am J Ophthalmol. 2000;129715- 722PubMedGoogle ScholarCrossref
Knighton  RWHuang  XRGreenfield  DS Analytical model of scanning laser polarimetry for retinal nerve fiberlayer assessment.  Invest Ophthalmol Vis Sci. 2002;43383PubMedGoogle Scholar
Greenfield  DSKnighton  RWFeuer  WJSchiffman  JC Normative retardation data corrected for the corneal polarization axiswith scanning laser polarimetry.  Ophthalmic Surg Lasers Imaging. 2003;34165- 171PubMedGoogle Scholar
Van Blokland  GJVerhelst  SC Corneal polarization in the living human eye explained with a biaxialmodel.  J Opt Soc Am A. 1987;482- 90PubMedGoogle ScholarCrossref
Brink  HBvan Blokland  GJ Birefringence of the human foveal area assessed in vivo with Mueller-matrixellipsometry.  J Opt Soc Am A. 1988;549- 57PubMedGoogle ScholarCrossref
Knighton  RWHuang  XR Linear birefringence of the central human cornea.  Invest Ophthalmol Vis Sci. 2002;4382- 86PubMedGoogle Scholar
Brink  HB Birefringence of the human crystalline lens in vivo.  J Opt Soc Am A. 1991;81788- 1793PubMedGoogle ScholarCrossref
Weinreb  RNBowd  CGreenfield  DSZangwill  LM Measurement of the magnitude and axis of corneal polarization withscanning laser polarimetry.  Arch Ophthalmol. 2002;120901- 906PubMedGoogle ScholarCrossref
Zhou  QWeinreb  RN Individualized compensation of anterior segment birefringence duringscanning laser polarimetry.  Invest Ophthalmol Vis Sci. 2002;432221- 2228PubMedGoogle Scholar
Weinreb  RNBowd  CZangwill  LM Glaucoma detection using scanning laser polarimetry with variable cornealpolarization compensation.  Arch Ophthalmol. 2003;121218- 224PubMedGoogle ScholarCrossref
Weinreb  RNBowd  CZangwill  LM Assessment of the retinal nerve fiber layer of the normal and glaucomatousmonkey with scanning laser polarimetry.  Trans Am Ophthalmol Soc. 2002;100161- 167PubMedGoogle Scholar
Weinreb  RNBowd  CZangwill  LM Scanning laser polarimetry in monkey eyes using variable corneal polarizationcompensation.  J Glaucoma. 2002;11378- 384PubMedGoogle ScholarCrossref
Hodapp  EParrish  RK  IIAnderson  DR Clinical Decisions in Glaucoma.  St Louis, Mo Mosby–Year Book1993;
Niessen  AGvan den Berg  TJLangerhorst  CTBossuyt  PM Grading of retinal nerve fiber layer with a photographic referenceset.  Am J Ophthalmol. 1995;120577- 586PubMedGoogle Scholar
Niessen  AGvan den Berg  TJ Evaluation of a reference set based grading system for retinal nervefiber layer photographs in 1941 eyes.  Acta Ophthalmol Scand. 1998;76278- 282PubMedGoogle ScholarCrossref
Zhou  QReed  JBetts  R  et al.  Detection of glaucomatous retinal nerve fiber layer damage by scanninglaser polarimetry with variable corneal compensation.  Paper presented at SPIE Ophthalmic Technologies XIII,BiOS2003; January25 2003; San Jose, Calif.Conference 4951.
DeLong  ERDeLong  DMClarke-Pearson  DL Comparing the areas under two or more correlated receiver operatingcharacteristic curves: a nonparametric approach.  Biometrics. 1988;44837- 845PubMedGoogle ScholarCrossref
Bowd  CZangwill  LWeinreb  RN The association between scanning laser polarimetry measurements usingvariable corneal polarization compensation and visual field sensitivity inglaucomatous eyes.  Arch Ophthalmol. 2003;121961- 966PubMedGoogle ScholarCrossref
Bagga  HGreenfield  DSFeuer  WKnighton  RW Scanning laser polarimetry with variable corneal compensation and opticalcoherence tomography in normal and glaucomatous eyes.  Am J Ophthalmol. 2003;135521- 529PubMedGoogle ScholarCrossref
Paczka  JAFriedman  DSQuigley  HA  et al.  Diagnostic capabilities of frequency-doubling technology, scanninglaser polarimetry, and nerve fiber layer photographs to distinguish glaucomatousdamage.  Am J Ophthalmol. 2001;131188- 197PubMedGoogle ScholarCrossref
Hoh  STGreenfield  DSLiebmann  JM  et al.  Effect of pupillary dilation on retinal nerve fiber layer thicknessas measured by scanning laser polarimetry in eyes with and without cataract.  J Glaucoma. 1999;8159- 163PubMedGoogle ScholarCrossref
Clinical Sciences
May 2004

Comparison of Scanning Laser Polarimetry Using Variable Corneal Compensationand Retinal Nerve Fiber Layer Photography for Detection of Glaucoma

Author Affiliations

From the Hamilton Glaucoma Center and Department of Ophthalmology,University of California, San Diego. Dr Weinreb is a consultant for and hasreceived research support from Laser Diagnostic Technologies Inc.

Arch Ophthalmol. 2004;122(5):698-704. doi:10.1001/archopht.122.5.698

Objective  To compare retinal nerve fiber layer (RNFL) measurements obtained withscanning laser polarimetry (SLP) using variable corneal polarization compensationwith standard red-free photography for detection of RNFL damage in glaucoma.

Methods  This observational, cross-sectional study included 1 eye of each of42 patients with open-angle glaucoma, 32 patients suspected of having glaucoma,and 40 healthy subjects. The RNFL measurements using SLP with variable cornealcompensation were obtained within 3 months of red-free photographs. Two independentobservers graded RNFL photographs using a standardized protocol. Superiorand inferior hemiretinas were scored separately, and a global score was obtainedby averaging scores from each hemiretina.

Main Outcome Measures  The RNFL photography scores were compared with RNFL thickness measurementsobtained with SLP. The receiver operating characteristic (ROC) curves wereconstructed to assess the abilities of the different methods to differentiateglaucoma patients from healthy subjects.

Results  The RNFL thickness decreased with increased RNFL damage as assessedby photographs in both hemiretinas (R2 =15%-47%). The area under the ROC curve for the best SLP parameter, Nerve FiberIndicator, was significantly greater than the area under the ROC curve forthe global RNFL photography score (0.91 vs 0.84, P =.03).

Conclusions  A moderate correlation was found between RNFL thickness measurementsobtained with SLP and RNFL scores from red-free photographs. Compared withsemiquantitative RNFL photography scores, the best SLP parameter had a higherdiagnostic accuracy to separate glaucoma patients from healthy subjects.