Comparison of the GDx VCC Scanning Laser Polarimeter, HRT II ConfocalScanning Laser Ophthalmoscope, and Stratus OCT Optical Coherence Tomographfor the Detection of Glaucoma | Glaucoma | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Harwerth  RSCarter-Dawson  LShen  FSmith  EL  IIICrawford  ML Ganglion cell losses underlying visual field defects from experimentalglaucoma.  Invest Ophthalmol Vis Sci. 1999;402242- 2250PubMedGoogle Scholar
2.
Sommer  AKatz  JQuigley  HA  et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatousfield loss.  Arch Ophthalmol. 1991;10977- 83PubMedGoogle ScholarCrossref
3.
Kass  MAHeuer  DKHigginbotham  EJ  et al.  The Ocular Hypertension Treatment Study: a randomized trial determinesthat topical ocular hypotensive medication delays or prevents the onset ofprimary open-angle glaucoma.  Arch Ophthalmol. 2002;120701- 713discussion, 829-830.PubMedGoogle ScholarCrossref
4.
Bathija  RZangwill  LBerry  CCSample  PAWeinreb  RN Detection of early glaucomatous structural damage with confocal scanninglaser tomography.  J Glaucoma. 1998;7121- 127PubMedGoogle Scholar
5.
Weinreb  RNLusky  MBartsch  DUMorsman  D Effect of repetitive imaging on topographic measurements of the opticnerve head.  Arch Ophthalmol. 1993;111636- 638PubMedGoogle ScholarCrossref
6.
Weinreb  RNDreher  AWColeman  AQuigley  HShaw  BReiter  K Histopathologic validation of Fourier-ellipsometry measurements ofretinal nerve fiber layer thickness.  Arch Ophthalmol. 1990;108557- 560PubMedGoogle ScholarCrossref
7.
Weinreb  RN Evaluating the retinal nerve fiber layer in glaucoma with scanninglaser polarimetry.  Arch Ophthalmol. 1999;1171403- 1406PubMedGoogle ScholarCrossref
8.
Huang  DSwanson  EALin  CP  et al.  Optical coherence tomography.  Science. 1991;2541178- 1181PubMedGoogle ScholarCrossref
9.
Hoh  STGreenfield  DSMistlberger  ALiebmann  JMIshikawa  HRitch  R Optical coherence tomography and scanning laser polarimetry in normal,ocular hypertensive, and glaucomatous eyes.  Am J Ophthalmol. 2000;129129- 135PubMedGoogle ScholarCrossref
10.
Greenfield  DS Optic nerve and retinal nerve fiber layer analyzers in glaucoma.  Curr Opin Ophthalmol. 2002;1368- 76PubMedGoogle ScholarCrossref
11.
Wollstein  GGarway-Heath  DFHitchings  RA Identification of early glaucoma cases with the scanning laser ophthalmoscope.  Ophthalmology. 1998;1051557- 1563PubMedGoogle ScholarCrossref
12.
Iester  MMardin  CYBudde  WMJunemann  AGHayler  JKJonas  JB Discriminant analysis formulas of optic nerve head parameters measuredby confocal scanning laser tomography.  J Glaucoma. 2002;1197- 104PubMedGoogle ScholarCrossref
13.
Ford  BAArtes  PHMcCormick  TANicolela  MTLeBlanc  RPChauhan  BC Comparison of data analysis tools for detection of glaucoma with theHeidelberg Retina Tomograph.  Ophthalmology. 2003;1101145- 1150PubMedGoogle ScholarCrossref
14.
Guedes  VSchuman  JSHertzmark  E  et al.  Optical coherence tomography measurement of macular and nerve fiberlayer thickness in normal and glaucomatous human eyes.  Ophthalmology. 2003;110177- 189PubMedGoogle ScholarCrossref
15.
Tjon-Fo-Sang  MJLemij  HG The sensitivity and specificity of nerve fiber layer measurements inglaucoma as determined with scanning laser polarimetry.  Am J Ophthalmol. 1997;12362- 69PubMedGoogle Scholar
16.
Weinreb  RNZangwill  LBerry  CCBathija  RSample  PA Detection of glaucoma with scanning laser polarimetry.  Arch Ophthalmol. 1998;1161583- 1589PubMedGoogle ScholarCrossref
17.
Weinreb  RNShakiba  SZangwill  L Scanning laser polarimetry to measure the nerve fiber layer of normaland glaucomatous eyes.  Am J Ophthalmol. 1995;119627- 636PubMedGoogle Scholar
18.
Bowd  CZangwill  LMBerry  CC  et al.  Detecting early glaucoma by assessment of retinal nerve fiber layerthickness and visual function.  Invest Ophthalmol Vis Sci. 2001;421993- 2003PubMedGoogle Scholar
19.
Zangwill  LMBowd  CBerry  CC  et al.  Discriminating between normal and glaucomatous eyes using the HeidelbergRetina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph.  Arch Ophthalmol. 2001;119985- 993PubMedGoogle ScholarCrossref
20.
Miglior  SCasula  MGuareschi  MMarchetti  IIester  MOrzalesi  N Clinical ability of Heidelberg retinal tomograph examination to detectglaucomatous visual field changes.  Ophthalmology. 2001;1081621- 1627PubMedGoogle ScholarCrossref
21.
Medeiros  FASusanna  R  Jr Comparison of algorithms for detection of localised nerve fibre layerdefects using scanning laser polarimetry.  Br J Ophthalmol. 2003;87413- 419PubMedGoogle ScholarCrossref
22.
Kanamori  ANakamura  MEscano  MFSeya  RMaeda  HNegi  A Evaluation of the glaucomatous damage on retinal nerve fiber layerthickness measured by optical coherence tomography.  Am J Ophthalmol. 2003;135513- 520PubMedGoogle ScholarCrossref
23.
Williams  ZYSchuman  JSGamell  L  et al.  Optical coherence tomography measurement of nerve fiber layer thicknessand the likelihood of a visual field defect.  Am J Ophthalmol. 2002;134538- 546PubMedGoogle ScholarCrossref
24.
Iester  MMikelberg  FSSwindale  NVDrance  SM ROC analysis of Heidelberg Retina Tomograph optic disc shape measuresin glaucoma.  Can J Ophthalmol. 1997;32382- 388PubMedGoogle Scholar
25.
Zhou  QWeinreb  RN Individualized compensation of anterior segment birefringence duringscanning laser polarimetry.  Invest Ophthalmol Vis Sci. 2002;432221- 2228PubMedGoogle Scholar
26.
Weinreb  RNBowd  CZangwill  LM Glaucoma detection using scanning laser polarimetry with variable cornealpolarization compensation.  Arch Ophthalmol. 2003;121218- 224PubMedGoogle ScholarCrossref
27.
Greenfield  DSKnighton  RWFeuer  WJSchiffman  JC Normative retardation data corrected for the corneal polarization axiswith scanning laser polarimetry.  Ophthalmic Surg Lasers Imaging. 2003;34165- 171PubMedGoogle Scholar
28.
Medeiros  FAZangwill  LMBowd  CBernd  ASWeinreb  RN Fourier analysis of scanning laser polarimetry measurements with variablecorneal compensation in glaucoma.  Invest Ophthalmol Vis Sci. 2003;442606- 2612PubMedGoogle ScholarCrossref
29.
Jaffe  GJCaprioli  J Optical coherence tomography to detect and manage retinal disease andglaucoma.  Am J Ophthalmol. 2004;137156- 169PubMedGoogle ScholarCrossref
30.
Miglior  SGuareschi  MAlbe  EGomarasca  SVavassori  MOrzalesi  N Detection of glaucomatous visual field changes using the Moorfieldsregression analysis of the Heidelberg retina tomograph.  Am J Ophthalmol. 2003;13626- 33PubMedGoogle ScholarCrossref
31.
Asman  PHeijl  A Glaucoma hemifield test: automated visual field evaluation.  Arch Ophthalmol. 1992;110812- 819PubMedGoogle ScholarCrossref
32.
Zhou  QReed  JBetts  R  et al.  Detection of glaucomatous retinal nerve fiber layer damage by scanninglaser polarimetry with variable corneal compensation.  SPIE Ophthalmic Technologies XIII. 2003;49511- 10Google Scholar
33.
Weinreb  RN Laser scanning tomography to diagnose and monitor glaucoma.  Curr Opin Ophthalmol. 1993;43- 6PubMedGoogle ScholarCrossref
34.
Mikelberg  FSParfitt  CSwindale  N Ability of the Heidelberg Retina Tomograph to detect early glaucomatousvisual field loss.  J Glaucoma. 1995;4242- 247Google ScholarCrossref
35.
DeLong  ERDeLong  DMClarke-Pearson  DL Comparing the areas under two or more correlated receiver operatingcharacteristic curves: a nonparametric approach.  Biometrics. 1988;44837- 845PubMedGoogle ScholarCrossref
36.
Jaeschke  RGuyatt  GHSackett  DLfor the Evidence-Based Medicine Working Group, Users' guides to the medical literature, III: how to use an articleabout a diagnostic test, B: what are the results and will they help me incaring for my patients?  JAMA. 1994;271703- 707PubMedGoogle ScholarCrossref
37.
Radack  KLRouan  GHedges  J The likelihood ratio: an improved measure for reporting and evaluatingdiagnostic test results.  Arch Pathol Lab Med. 1986;110689- 693PubMedGoogle Scholar
38.
Fagan  TJ Letter: nomogram for Bayes theorem.  N Engl J Med. 1975;293- 257PubMedGoogle Scholar
39.
Simel  DLSamsa  GPMatchar  DB Likelihood ratios with confidence: sample size estimation for diagnostictest studies.  J Clin Epidemiol. 1991;44763- 770PubMedGoogle ScholarCrossref
40.
Fleiss  JL Statistical methods for rates and proportions.  New York, NY Wiley1981;212- 236
41.
Landis  JRKoch  GG The measurement of observer agreement for categorical data.  Biometrics. 1977;33159- 174PubMedGoogle ScholarCrossref
42.
Hodapp  EParrish  RK  IIAnderson  DR Clinical Decisions in Glaucoma.  St Louis, Mo Mosby–Year Book1993;
43.
Greaney  MJHoffman  DCGarway-Heath  DFNakla  MColeman  ALCaprioli  J Comparison of optic nerve imaging methods to distinguish normal eyesfrom those with glaucoma.  Invest Ophthalmol Vis Sci. 2002;43140- 145PubMedGoogle Scholar
44.
Greenfield  DSKnighton  RWFeuer  WJSchiffman  JCZangwill  LWeinreb  RN Correction for corneal polarization axis improves the discriminatingpower of scanning laser polarimetry.  Am J Ophthalmol. 2002;13427- 33PubMedGoogle ScholarCrossref
45.
Wagner  RFBeiden  SVMetz  CE Continuous versus categorical data for ROC analysis: some quantitativeconsiderations.  Acad Radiol. 2001;8328- 334PubMedGoogle ScholarCrossref
46.
Bowd  CChan  KZangwill  LM  et al.  Comparing neural networks and linear discriminant functions for glaucomadetection using confocal scanning laser ophthalmoscopy of the optic disc.  Invest Ophthalmol Vis Sci. 2002;433444- 3454PubMedGoogle Scholar
47.
Mardin  CYHothorn  TPeters  AJunemann  AGNguyen  NXLausen  B New glaucoma classification method based on standard Heidelberg RetinaTomograph parameters by bagging classification trees.  J Glaucoma. 2003;12340- 346PubMedGoogle ScholarCrossref
48.
Swindale  NVStjepanovic  GChin  AMikelberg  FS Automated analysis of normal and glaucomatous optic nerve head topographyimages.  Invest Ophthalmol Vis Sci. 2000;411730- 1742PubMedGoogle Scholar
49.
Gallagher  EJ Evidence-based emergency medicine/editorial: the problem with sensitivityand specificity.  Ann Emerg Med. 2003;42298- 303PubMedGoogle ScholarCrossref
50.
Moons  KGHarrell  FE Sensitivity and specificity should be de-emphasized in diagnostic accuracystudies.  Acad Radiol. 2003;10670- 672PubMedGoogle ScholarCrossref
51.
Choi  BC Slopes of a receiver operating characteristic curve and likelihoodratios for a diagnostic test.  Am J Epidemiol. 1998;1481127- 1132PubMedGoogle ScholarCrossref
52.
Tandberg  DDeely  JJO'Malley  AJ Generalized likelihood ratios for quantitative diagnostic test scores.  Am J Emerg Med. 199715694- 699PubMedGoogle Scholar
53.
Brown  MDReeves  MJ Evidence-based emergency medicine/skills for evidence-based emergencycare: interval likelihood ratios: another advantage for the evidence-baseddiagnostician.  Ann Emerg Med. 2003;42292- 297PubMedGoogle ScholarCrossref
54.
Medeiros  FAZangwill  LBowd  CMohammadi  KWeinreb  RN Comparison of scanning laser polarimetry using variable corneal compensationand retinal nerve fiber layer photography for detection of glaucoma.  Arch Ophthalmol. 2004;122698- 704Google ScholarCrossref
55.
Bagga  HGreenfield  DSFeuer  WKnighton  RW Scanning laser polarimetry with variable corneal compensation and opticalcoherence tomography in normal and glaucomatous eyes.  Am J Ophthalmol. 2003;135521- 529PubMedGoogle ScholarCrossref
Clinical Sciences
June 2004

Comparison of the GDx VCC Scanning Laser Polarimeter, HRT II ConfocalScanning Laser Ophthalmoscope, and Stratus OCT Optical Coherence Tomographfor the Detection of Glaucoma

Author Affiliations

From the Hamilton Glaucoma Center and Department of Ophthalmology,University of California, San Diego. Dr Weinreb receives research supportfrom Carl Zeiss Meditec, Inc (Dublin, Calif), Heidelberg Engineering (Dossenheim,Germany), and Laser Diagnostic Technologies, Inc (San Diego).

Arch Ophthalmol. 2004;122(6):827-837. doi:10.1001/archopht.122.6.827
Abstract

Objective  To compare the abilities of current commercially available versionsof 3 optical imaging techniques: scanning laser polarimetry with variablecorneal compensation (GDx VCC), confocal scanning laser ophthalmoscopy (HRTII [Heidelberg Retina Tomograph]), and optical coherence tomography (StratusOCT) to discriminate between healthy eyes and eyes with glaucomatous visualfield loss.

Methods  We included 107 patients with glaucomatous visual field loss and 76healthy subjects of a similar age. All individuals underwent imaging witha GDx VCC, HRT II, and fast retinal nerve fiber layer scan with the StratusOCT as well as visual field testing within a 6-month period. Receiver operatingcharacteristic curves and sensitivities at fixed specificities (80% and 95%)were calculated for parameters reported as continuous variables. Diagnosticcategorization (outside normal limits, borderline, or within normal limits)provided by each instrument after comparison with its respective normativedatabase was also evaluated, and likelihood ratios were reported. Agreementon categorization between methods (weighted κ) was assessed.

Results  After the exclusion of subjects with unacceptable images, the finalstudy sample included 141 eyes of 141 subjects (75 with glaucoma and 66 healthycontrol subjects). Mean ± SD mean deviation of the visual field testresult for patients with glaucoma was −4.87 ± 3.9 dB, and 70%of these patients had early glaucomatous visual field damage. No statisticallysignificant difference was found between the areas under the receiver operatingcharacteristic curves (AUCs) for the best parameters from the GDx VCC (nervefiber indicator, AUC = 0.91), Stratus OCT (retinal nerve fiber layer inferiorthickness, AUC = 0.92), and HRT II (linear discriminant function, AUC = 0.86).Abnormal results for each of the instruments, after comparison with theirnormative databases, were associated with strong positive likelihood ratios.Chance-corrected agreement (weighted κ) among the 3 instruments rangedfrom moderate to substantial (0.50-0.72).

Conclusions  The AUCs and the sensitivities at high specificities were similar amongthe best parameters from each instrument. Abnormal results (as compared witheach instrument's normative database) were associated with high likelihoodratios and large effects on posttest probabilities of having glaucomatousvisual field loss. Calculation of likelihood ratios may provide additionalinformation to assist the clinician in diagnosing glaucoma with these instruments.

×