Spontaneous Uveal Amelanotic Melanoma in Transgenic Tyr-RAS+ Ink4a/Arf−/− Mice | Genetics and Genomics | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Egan  KMSeddon  JMGlynn  RJ  et al.  Epidemiologic aspects of uveal melanoma.  Surv Ophthalmol 1988;32239- 251PubMedGoogle ScholarCrossref
Char  DH Clinical Ocular Oncology.  Philadelphia, Pa Lippincott-Raven Publishers1997;
Woll  EBedikian  ALegha  SS Uveal melanoma: natural history and treatment options for metastatic disease.  Melanoma Res 1999;9575- 581PubMedGoogle ScholarCrossref
Shields  CLShields  JAMaterin  M  et al.  Iris melanoma: risk factors for metastasis in 169 consecutive patients.  Ophthalmology 2001;108172- 178PubMedGoogle ScholarCrossref
Hyman  JAKoch  SAWilcock  BP Canine choroidal melanoma with metastases.  Vet Ophthalmol 2002;5113- 117PubMedGoogle ScholarCrossref
Bertoy  RWBrightman  AHRegan  K Intraocular melanoma with multiple metastases in a cat.  J Am Vet Med Assoc 1988;19287- 89PubMedGoogle Scholar
Davidson  HJBlanchard  GLWheeler  CA  et al.  Anterior uveal melanoma, with secondary keratitis, cataract, and glaucoma, in a horse.  J Am Vet Med Assoc 1991;1991049- 1050PubMedGoogle Scholar
Yoshitomi  KBoorman  GA Spontaneous amelanotic melanomas of the uveal tract in F344 rats.  Vet Pathol 1991;28403- 409PubMedGoogle ScholarCrossref
Dithmar  SAlbert  DMGrossniklaus  HE Animal models of uveal melanoma.  Melanoma Res 2000;10195- 211PubMedGoogle ScholarCrossref
Mueller  AJFolberg  RFreeman  WR  et al.  Evaluation of the human choroidal melanoma rabbit model for studying microcirculation patterns with confocal ICG and histology.  Exp Eye Res 1999;68671- 678PubMedGoogle ScholarCrossref
Bonicel  PMichelot  JBacin  F  et al.  Establishment of IPC 227 cells as human xenografts in rabbits: a model of uveal melanoma.  Melanoma Res 2000;10445- 450PubMedGoogle ScholarCrossref
Mueller  AJManiotis  AJFreeman  WR  et al.  An orthotopic model for human uveal melanoma in SCID mice.  Microvasc Res 2002;64207- 213PubMedGoogle ScholarCrossref
Bradl  MKlein-Szanto  APorter  S  et al.  Malignant melanoma in transgenic mice.  Proc Natl Acad Sci U S A 1991;88164- 168PubMedGoogle ScholarCrossref
Syed  NAWindle  JJDarjatmoko  SR  et al.  Transgenic mice with pigmented intraocular tumors: tissue of origin and treatment.  Invest Ophthalmol Vis Sci 1998;392800- 2805PubMedGoogle Scholar
Powell  MBHyman  PBell  OD  et al.  Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter.  Mol Carcinog 1995;1282- 90PubMedGoogle ScholarCrossref
Kramer  TRPowell  MBWilson  MM  et al.  Pigmented uveal tumours in a transgenic mouse model.  Br J Ophthalmol 1998;82953- 960PubMedGoogle ScholarCrossref
Chin  LPomerantz  JPolsky  D  et al.  Cooperative effects of INK4a and ras in melanoma susceptibility in vivo.  Genes Dev 1997;112822- 2834PubMedGoogle ScholarCrossref
Beermann  FHunziker  AFoletti  A Transgenic mouse models for tumors of melanocytes and retinal pigment epithelium.  Pigment Cell Res 1999;1271- 80PubMedGoogle ScholarCrossref
Moll  RFranke  WWSchiller  DL  et al.  The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.  Cell 1982;3111- 24PubMedGoogle ScholarCrossref
Wick  MPatterson  J Multimodal pathologic diagnosis of malignant melanoma: integration of morphology, histochemistry, immunohistology, and electron microscopy.  J Histotechnol 2003;26253- 258Google ScholarCrossref
Sharpless  NEDePinho  RA The INK4A/ARF locus and its two gene products.  Curr Opin Genet Dev 1999;922- 30PubMedGoogle ScholarCrossref
Honda  RYasuda  H Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.  EMBO J 1999;1822- 27PubMedGoogle ScholarCrossref
Serrano  MLee  HChin  L  et al.  Role of the INK4a locus in tumor suppression and cell mortality.  Cell 1996;8527- 37PubMedGoogle ScholarCrossref
Hussussian  CJStruewing  JPGoldstein  AM  et al.  Germline p16 mutations in familial melanoma.  Nat Genet 1994;815- 21PubMedGoogle ScholarCrossref
Kamb  AShattuck-Eidens  DEeles  R  et al.  Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus.  Nat Genet 1994;823- 26PubMedGoogle ScholarCrossref
Randerson-Moor  JAHarland  MWilliams  S  et al.  A germline deletion of p14ARF but not CDKN2A in a melanoma-neural system tumour syndrome family.  Hum Mol Genet 2001;1055- 62PubMedGoogle ScholarCrossref
Rizos  HPuig  SBadenas  C  et al.  A melanoma-associated germline mutation in exon 1β inactivates p14ARF.  Oncogene 2001;205543- 5547PubMedGoogle ScholarCrossref
Hewitt  CLee Wu  CEvans  G  et al.  Germline mutation of ARF in a melanoma kindred.  Hum Mol Genet 2002;111273- 1279PubMedGoogle ScholarCrossref
Hearle  NDamato  BEHumphreys  J  et al.  Contribution of germline mutations in BRCA2, P16INK4A, P14ARF and P15 to uveal melanoma.  Invest Ophthalmol Vis Sci 2003;44458- 462PubMedGoogle ScholarCrossref
Soufir  NBressac–de Paillerets  BDesjardins  L  et al.  Individuals with presumably hereditary uveal melanoma do not harbour germline mutations in the coding regions of either the P16INK4A, P14ARF or cdk4 genes.  Br J Cancer 2000;82818- 822PubMedGoogle ScholarCrossref
Edmunds  SCKelsell  DPHungerford  JL  et al.  Mutational analysis of selected genes in the TGFβ, Wnt, pRb, and p53 pathways in primary uveal melanoma.  Invest Ophthalmol Vis Sci 2002;432845- 2851PubMedGoogle Scholar
Kumar  RLundh Rozell  BLouhelainen  J  et al.  Mutations in the CDKN2A(p16INK4A) gene in microdissected sporadic primary melanomas.  Int J Cancer 1998;75193- 198PubMedGoogle ScholarCrossref
Sharpless  NEKannan  KXu  J  et al.  Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo.  Oncogene 2003;225055- 5059PubMedGoogle ScholarCrossref
Callender  G Malignant melanotic tumors of the eye: a study of histologic types in 111 cases.  Trans Am Acad Ophthalmol Otolaryngol 1931;36131- 142Google Scholar
Gamel  JWMcLean  IWFoster  WD  et al.  Uveal melanomas: correlation of cytologic features with prognosis.  Cancer 1978;411897- 1901PubMedGoogle ScholarCrossref
Holly  EAAston  DAChar  DH  et al.  Uveal melanoma in relation to ultraviolet light exposure and host factors.  Cancer Res 1990;505773- 5777PubMedGoogle Scholar
Holly  EAAston  DAAhn  DK  et al.  Intraocular melanoma linked to occupations and chemical exposures.  Epidemiology 1996;755- 61PubMedGoogle ScholarCrossref
Guenel  PLaforest  LCyr  D  et al.  Occupational risk factors, ultraviolet radiation, and ocular melanoma: a case-control study in France.  Cancer Causes Control 2001;12451- 459PubMedGoogle ScholarCrossref
Laboratory Sciences
August 1, 2005

Spontaneous Uveal Amelanotic Melanoma in Transgenic Tyr-RAS+ Ink4a/Arf−/− Mice

Author Affiliations

Author Affiliations: Division of Biochemical Toxicology, National Center for Toxicological Research (Drs Tolleson and Melchior), and Toxicologic Pathology Associates (Dr Latendresse and Mr Warbritton), Jefferson, Ark; Department of Pathology, University of Arkansas for Medical Sciences, Little Rock (Dr Doss); Department of Dermatology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass (Dr Chin); School of Veterinary Medicine, University of Wisconsin–Madison (Dr Dubielzig); and Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison (Dr Albert).

Arch Ophthalmol. 2005;123(8):1088-1094. doi:10.1001/archopht.123.8.1088

Objective  To characterize a murine model of spontaneous amelanotic melanoma arising in the uvea of transgenic mice bearing a targeted deletion of the Ink4a/Arf tumor suppressor locus (exons 2 and 3) and expressing human H-ras controlled by the human tyrosinase promoter.

Methods  Ocular lesions developed in 20 (15.7%) of 127 male albino Tyr-RAS+ Ink4a/Arf−/− transgenic FVB/N mice within 6 months, and were evaluated histologically and ultrastructurally.

Results  Uveal melanomas were locally invasive but confined to the eye, with no evidence of metastasis. Tumor cells exhibited epithelioid and spindle-shaped morphological features and closely resembled the human counterpart. Melan-A, S100 and neuron-specific enolase expression were detected immunohistochemically. Melanosomal structures were detected using electron microscopy. The retinal pigment epithelium was intact above small melanomas, and electron microscopy of the tumors failed to show the presence of basement membrane formation or desmosomes.

Conclusion  Spontaneous uveal malignant melanomas occurring in male Tyr-RAS+ Ink4a/Arf−/− transgenic mice arise within the choroid or ciliary body and share histopathological features characteristic of human uveal melanoma.

Clinical Relevance  Uveal melanoma research has benefited from xenograft models, but engineered mouse models of spontaneous uveal amelanotic melanoma will undoubtedly further our understanding of the genetic underpinning for this disease.