[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.140. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Clinical Sciences
August 2007

In Vivo Corneal High-Speed, Ultra–High-Resolution Optical Coherence Tomography

Author Affiliations

Author Affiliations: University of Pittsburgh Medical Center Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (Drs Christopoulos, Wollstein, Ishikawa, Dhaliwal, and Schuman; Mr Kagemann; and Ms Gabriele); Department of Bioengineering, University of Pittsburgh School of Engineering (Drs Ishikawa and Schuman and Mr Kagemann); Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge (Drs Wojtkowski and Fujimoto and Mr Srinivasan); Institute of Physics, Nicolaus Copernicus University, Torun, Poland (Dr Wojtkowski); and New England Eye Center, Tufts–New England Medical Center, Boston, Massachusetts (Dr Duker).

Arch Ophthalmol. 2007;125(8):1027-1035. doi:10.1001/archopht.125.8.1027
Abstract

Objective  To introduce new corneal high-speed, ultra–high-resolution optical coherence tomography (hsUHR-OCT) technology that improves the evaluation of complicated and uncomplicated cataract, corneal, and refractive surgical procedures.

Design  This case series included a control subject and 9 eyes of 8 patients who had undergone phacoemulsification, Descemet membrane stripping endokeratoplasty, corneal implantation for keratoconus, and complicated and uncomplicated laser in situ keratomileusis. These eyes underwent imaging using a prototype ophthalmic hsUHR-OCT system. All the scans were compared with conventional slitlamp biomicroscopy.

Results  Cross-sectional hsUHR-OCT imaging allowed in vivo differentiation of corneal layers and existing pathologic abnormalities at ultrahigh axial image resolution. These images illustrate the various incisional and refractive interfaces created with corneal procedures.

Conclusions  The magnified view of the cornea using hsUHR-OCT is helpful in conceptualizing and understanding basic and complicated clinical pathologic features; hsUHR-OCT has the potential to become a powerful, noninvasive clinical corneal imaging modality that can enhance surgical management.

Trial Registration  clinicaltrials.gov Identifier: LOCATOR="http://clinicaltrials.gov/show/NCT00343473">NCT00343473

×