[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.140. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Clinicopathologic Reports, Case Reports, and Small Case Series
November 2007

Photoreceptor Disruption Secondary to Posterior Vitreous Detachment as Visualized Using High-Speed Ultrahigh-Resolution Optical Coherence Tomography

Arch Ophthalmol. 2007;125(11):1579-1580. doi:10.1001/archopht.125.11.1579

Optical coherence tomography (OCT) has been shown to be beneficial in the diagnosis of posterior vitreous detachment (PVD) and vitreomacular traction. In 2001, ultrahigh-resolution OCT (UHR-OCT), capable of 3-μm axial resolution in the human eye, has demonstrated refined visualization of outer retinal layers.1 Dramatic advances in the imaging speed of OCT enable high pixel density, high-definition imaging with further improved image quality.2 The following is a case of bilateral photoreceptor disruption secondary to PVD, imaged using high-speed UHR-OCT.

A 66-year-old man underwent cataract extraction and placement of a posterior chamber intraocular lens (PCIOL) in the left eye. One day after surgery, his visual acuity returned to 20/20 OS. One week after surgery, he reported a decline in vision in the left eye associated with a floater. Best-corrected visual acuity was 20/25 OD and 20/40 OS. Anterior ocular examination findings revealed moderate nuclear sclerosis in the right eye and a well-placed PCIOL in the left eye. Dilated fundus examination revealed a Weiss ring in both eyes. In the asymptomatic right eye, high-speed UHR-OCT demonstrated vitreofoveal attachment (seen in some OCT images; image not shown herein), slight foveal thickening, irregular fovea, and minimal interruption of the photoreceptor outer segment layer (Figure, A). In the symptomatic left eye, there was a detached posterior hyaloid with an associated pseudooperculum, interruption of the foveal photoreceptor outer segment layer, and an irregular fovea (Figure, B).

×