Effect of Pulse Duration on Size and Character of the Lesion in Retinal Photocoagulation | Ophthalmology | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Little  HLZweng  HCPeabody  RR Argon laser slit-lamp retinal photocoagulation.  Trans Am Acad Ophthalmol Otolaryngol 1970;74 (1) 85- 97PubMedGoogle Scholar
2.
Early Treatment Diabetic Retinopathy Study Research Group, Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema: Early Treatment Diabetic Retinopathy Study Report Number 2.  Ophthalmology 1987;94 (7) 761- 774PubMedGoogle ScholarCrossref
3.
Macular Photocoagulation Study Group, The influence of treatment extent on the visual acuity of eyes treated with krypton laser for juxtafoveal choroidal neovascularization.  Arch Ophthalmol 1995;113 (2) 190- 194PubMedGoogle ScholarCrossref
4.
Kapany  NSPeppers  NAZweng  HCFlocks  M Retinal photocoagulation by lasers.  Nature 1963;199146- 149PubMedGoogle ScholarCrossref
5.
Mainster  MA Decreasing retinal photocoagulation damage: principles and techniques.  Semin Ophthalmol 1999;14 (4) 200- 209PubMedGoogle ScholarCrossref
6.
Obana  ALorenz  BGassler  ABirngruber  R The therapeutic range of chorioretinal photocoagulation with diode and argon lasers: an experimental comparison.  Lasers Light Ophthalmol 1992;4 (3/4) 147- 156Google Scholar
7.
Birngruber  RGabel  VPHillenkamp  F Fundus reflectometry: a step towards optimization of the retina photocoagulation.  Mod Probl Ophthalmol 1977;18383- 390PubMedGoogle Scholar
8.
Smiddy  WEFine  SLQuigley  HAHohman  RMAddicks  EA Comparison of krypton and argon laser photocoagulation: results of stimulated clinical treatment of primate retina.  Arch Ophthalmol 1984;102 (7) 1086- 1092PubMedGoogle ScholarCrossref
9.
Smiddy  WEPatz  AQuigley  HADunkelberger  GR Histopathology of the effects of tuneable dye laser on monkey retina.  Ophthalmology 1988;95 (7) 956- 963PubMedGoogle ScholarCrossref
10.
Palanker  DBlumenkranz  MSWeiter  JJ Retinal laser therapy: biophysical basis and applications. Ryan  SJSchachat  APWilkinson  WPGlaser  B Retina. 4th ed. St Louis, MO Elsevier Health Sciences2005;539- 553Google Scholar
11.
Roider  JHillenkamp  FFlotte  TBirngruber  R Microphotocoagulation: selective effects of repetitive short laser pulses.  Proc Natl Acad Sci U S A 1993;90 (18) 8643- 8647PubMedGoogle ScholarCrossref
12.
Luttrull  JKMusch  DCMainster  MA Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema.  Br J Ophthalmol 2005;89 (1) 74- 80PubMedGoogle ScholarCrossref
13.
Desmettre  TJMordon  SRBuzawa  DMMainster  MA Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters.  Br J Ophthalmol 2006;90 (6) 709- 712PubMedGoogle ScholarCrossref
14.
Framme  CSchuele  GRoider  JBirngruber  RBrinkmann  R Influence of pulse duration and pulse number in selective RPE laser treatment.  Lasers Surg Med 2004;34 (3) 206- 215PubMedGoogle ScholarCrossref
15.
Framme  CSchuele  GRoider  JKracht  DBirngruber  RBrinkmann  R Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits.  Ophthalmic Surg Lasers 2002;33 (5) 400- 409PubMedGoogle Scholar
16.
Schuele  GRumohr  MHuettmann  GBrinkmann  R RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen.  Invest Ophthalmol Vis Sci 2005;46 (2) 714- 719PubMedGoogle ScholarCrossref
17.
Blumenkranz  MSYellachich  DAndersen  DE  et al.  Semiautomated patterned scanning laser for retinal photocoagulation.  Retina 2006;26 (3) 370- 376PubMedGoogle ScholarCrossref
18.
Mosier  MAChampion  JLiaw  LHBerns  MW Retinal effects of the frequency-doubled (532 nm) YAG laser: histopathological comparison with argon laser.  Lasers Surg Med 1985;5 (4) 377- 404PubMedGoogle ScholarCrossref
19.
McMullen  WWGarcia  CA Comparison of retinal photocoagulation using pulsed frequency-doubled neodymium-YAG and argon green laser.  Retina 1992;12 (3) 265- 269PubMedGoogle ScholarCrossref
20.
Mainster  MA Wavelength selection in macular photocoagulation: tissue optics, thermal effects, and laser systems.  Ophthalmology 1986;93 (7) 952- 958PubMedGoogle ScholarCrossref
21.
Birngruber  R Choroidal circulation and heat convection at the fundus of the eye. Wolbarsht  ML Laser Applications to Medicine and Biology. New York, NY Plenum Press1991;277- 361Google Scholar
22.
Turner  KW Hematoxylin toluidine blue–phloxinate staining of glycol methacrylate sections of retina and other tissues.  Stain Technol 1980;55 (4) 229- 233PubMedGoogle Scholar
23.
National Institutes of Health, ImageJ. Published 2004. http://rsb.info.nih.gov/ij/index.html. Accessed October 25, 2007
24.
Niemz  M Heat transport. Greenbaum  E Laser-Tissue Interactions Fundamentals and Applications. Berlin, Germany Springer2002;68- 80Biological and Medical Physics SeriesGoogle Scholar
25.
Birngruber  RHillenkamp  FGabel  VP Theoretical investigations of laser thermal retinal injury.  Health Phys 1985;48 (6) 781- 796PubMedGoogle ScholarCrossref
Laboratory Sciences
January 1, 2008

Effect of Pulse Duration on Size and Character of the Lesion in Retinal Photocoagulation

Author Affiliations

Author Affiliations: Department of Ophthalmology, Stanford University, Stanford, California (Drs Jain, Blumenkranz, and Palanker and Mr Huie); Stanford University School of Medicine (Mr Paulus); and OptiMedica Corp, Santa Clara, California (Messrs Wiltberger and Andersen).

Arch Ophthalmol. 2008;126(1):78-85. doi:10.1001/archophthalmol.2007.29
Abstract

Objective  To systematically evaluate the effects of laser beam size, power, and pulse duration of 1 to 100 milliseconds on the characteristics of ophthalmoscopically visible retinal coagulation lesions.

Methods  A 532-nm Nd:YAG laser was used to irradiate 36 retinas in Dutch Belt rabbits with retinal beam sizes of 66, 132, and 330 μm. Lesions were clinically graded 1 minute after placement, their size measured by digital imaging, and their depth assessed histologically at different time points.

Results  Retinal lesion size increased linearly with laser power and logarithmically with pulse duration. The width of the therapeutic window, defined by the ratio of the threshold power for producing a rupture to that of a mild coagulation, decreased with decreasing pulse durations. For 132- and 330-μm retinal beam sizes, the therapeutic window declined from 3.9 to 3.0 and 5.4 to 3.7, respectively, as pulse duration decreased from 100 to 20 ms. At pulse durations of 1 millisecond, the therapeutic window decreased to unity, at which point rupture and a mild lesion were equally likely to occur.

Conclusions  At shorter pulse durations, the width and axial extent of the retinal lesions are smaller and less dependent on variations in laser power than at longer durations. The width of the therapeutic window, a measure of relative safety, increases with the beam size.

Clinical Relevance  Pulse durations of approximately 20 milliseconds represent an optimal compromise between the favorable impact of speed, higher spatial localization, and reduced collateral damage on one hand, and sufficient width of the therapeutic window (> 3) on the other.

×