[Skip to Navigation]
Sign In
Table 1. 
Demographic and Dietary Characteristics in Participants vs Nonparticipants From Melbourne, Australia, 1990-1994
Demographic and Dietary Characteristics in Participants vs Nonparticipants From Melbourne, Australia, 1990-1994
Table 2. 
Association of AMD With Energy-Adjusted Dietary Fat Intakea
Association of AMD With Energy-Adjusted Dietary Fat Intakea
Table 3. 
Association of AMD With Increasing Frequencies of Food Intakea
Association of AMD With Increasing Frequencies of Food Intakea
1.
Friedman  DSO'Colmain  BJMuñoz  B  et al. Eye Diseases Prevalence Research Group, Prevalence of age-related macular degeneration in the United States.  Arch Ophthalmol 2004;122 (4) 564- 572PubMedGoogle ScholarCrossref
2.
VanNewkirk  MRNanjan  MBWang  JJMitchell  PTaylor  HRMcCarty  CA The prevalence of age-related maculopathy: the visual impairment project.  Ophthalmology 2000;107 (8) 1593- 1600PubMedGoogle ScholarCrossref
3.
 Clear Insight: The Economic Impact and Cost of Visual Loss in Australia, Melbourne.   Access Economics Pty Limited. Prepared for Eye Research Australia 2004;Google Scholar
4.
Brown  MMBrown  GCSharma  S  et al.  The burden of age-related macular degeneration: a value-based analysis.  Curr Opin Ophthalmol 2006;17 (3) 257- 266PubMedGoogle Scholar
5.
Haines  JLHauser  MASchmidt  S  et al.  Complement factor H variant increases the risk of age-related macular degeneration.  Science 2005;308 (5720) 419- 421PubMedGoogle ScholarCrossref
6.
Thornton  JEdwards  RMitchell  PHarrison  RABuchan  IKelly  SP Smoking and age-related macular degeneration: a review of association.  Eye 2005;19 (9) 935- 944PubMedGoogle ScholarCrossref
7.
Brown  DMKaiser  PKMichels  M  et al. ANCHOR Study Group, Ranibizumab versus verteporfin for neovascular age-related macular degeneration.  N Engl J Med 2006;355 (14) 1432- 1444PubMedGoogle ScholarCrossref
8.
Seddon  JMRosner  BSperduto  RD  et al.  Dietary fat and risk for advanced age-related macular degeneration.  Arch Ophthalmol 2001;119 (8) 1191- 1199PubMedGoogle ScholarCrossref
9.
Seddon  JMCote  JRosner  B Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake.  Arch Ophthalmol 2003;121 (12) 1728- 1737PubMedGoogle ScholarCrossref
10.
Chua  BFlood  VRochtchina  EWang  JJSmith  WMitchell  P Dietary fatty acids and the 5-year incidence of age-related maculopathy.  Arch Ophthalmol 2006;124 (7) 981- 986PubMedGoogle ScholarCrossref
11.
Cho  EHung  SWillett  WC  et al.  Prospective study of dietary fat and the risk of age-related macular degeneration.  Am J Clin Nutr 2001;73 (2) 209- 218PubMedGoogle Scholar
12.
Hodge  WGSchachter  HMBarnes  D  et al.  Efficacy of omega-3 fatty acids in preventing age-related macular degeneration: a systematic review.  Ophthalmology 2006;113 (7) 1165- 1172, quiz 1172-1173, 1178PubMedGoogle ScholarCrossref
13.
Guymer  RHChong  EW Modifiable risk factors for age-related macular degeneration.  Med J Aust 2006;184 (9) 455- 458PubMedGoogle Scholar
14.
Chong  EWSinclair  AJGuymer  RH Facts on fats.  Clin Experiment Ophthalmol 2006;34 (5) 464- 471PubMedGoogle ScholarCrossref
15.
Arnarsson  ASverrisson  TStefansson  E  et al.  Risk factors for five-year incident age-related macular degeneration: the Reykjavik Eye Study.  Am J Ophthalmol 2006;142 (3) 419- 428PubMedGoogle ScholarCrossref
16.
Giles  GG Epidemiology of food and disease: The Melbourne cohort study.  Asia Pac J Clin Nutr 2004;13 ((suppl)) S30Google Scholar
17.
Giles  GGEnglish  DR The Melbourne Collaborative Cohort Study.  IARC Sci Publ 2002;15669- 70PubMedGoogle Scholar
18.
Klein  RKlein  BEMoss  SEWong  TY The relationship of retinopathy in persons without diabetes to the 15-year incidence of diabetes and hypertension: Beaver Dam Eye Study.  Trans Am Ophthalmol Soc 2006;10498- 107PubMedGoogle Scholar
19.
Tan  JSWang  JJFlood  VRochtchina  ESmith  WMitchell  P Dietary antioxidants and the long-term incidence of age-related macular degeneration: The Blue Mountains Eye Study.  Ophthalmology 2008;115 (2) 334- 341PubMedGoogle ScholarCrossref
20.
Ireland  PJolley  DGiles  G  et al.  Development of the Melbourne FFQ: a food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort.  Asia Pac J Clin Nutr 1994;319- 31Google Scholar
21.
Lewis  JMilligan  GHunt  A NUTTAB95 Nutrient Data Table for Use in Australia.  Canberra Australian Government Publishing Service1995;
22.
RMIT Lipid Research Group, Fatty acid compositional database: Xyris Software.  Brisbane, Australia RMIT Lipid Research Group2001;
23.
US Department of Agriculture Nutrition Coordinating Center, USDA-NCC Carotenoid Database for US Foods.  Washington, DC US Dept of Agriculture Nutrition Coordinating Center1998;
24.
Hodge  AMSimpson  JAGibson  RA  et al.  Plasma phospholipid fatty acid composition as a biomarker of habitual dietary fat intake in an ethnically diverse cohort [published online ahead of print September 7, 2006].  Nutr Metab Cardiovasc Dis 2007;17 (6) 415- 426PubMedGoogle ScholarCrossref
25.
Hunter  D Biochemical indicators of dietary intake. Willett  W Nutritional Epidemiology. New York, NY Oxford University Press1998;174- 243Google Scholar
26.
Hunter  DJRimm  EBSacks  FM  et al.  Comparison of measures of fatty acid intake by subcutaneous fat aspirate, food frequency questionnaire, and diet records in a free-living population of US men.  Am J Epidemiol 1992;135 (4) 418- 427PubMedGoogle Scholar
27.
Ma  JFolsom  ARShahar  EEckfeldt  JHThe Atherosclerosis Risk in Communities (ARIC) Study Investigators, Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults.  Am J Clin Nutr 1995;62 (3) 564- 571PubMedGoogle Scholar
28.
Bird  ACBressler  NMBressler  SB  et al. The International ARM Epidemiological Study Group, An international classification and grading system for age-related maculopathy and age-related macular degeneration.  Surv Ophthalmol 1995;39 (5) 367- 374PubMedGoogle ScholarCrossref
29.
Ferris  FLDavis  MDClemons  TE  et al. Age-Related Eye Disease Study (AREDS) Research Group, A simplified severity scale for age-related macular degeneration: AREDS Report No. 18.  Arch Ophthalmol 2005;123 (11) 1570- 1574PubMedGoogle ScholarCrossref
30.
Brown  CCKipnis  VFreedman  LSHartman  AMSchatzkin  AWacholder  S Energy adjustment methods for nutritional epidemiology: the effect of categorization.  Am J Epidemiol 1994;139 (3) 323- 338PubMedGoogle Scholar
31.
Willett  WC Trans fatty acids and cardiovascular disease-epidemiological data.  Atheroscler Suppl 2006;7 (2) 5- 8PubMedGoogle ScholarCrossref
32.
Lopez-Garcia  ESchulze  MBMeigs  JB  et al.  Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction.  J Nutr 2005;135 (3) 562- 566PubMedGoogle Scholar
33.
Smith  WMitchell  PLeeder  SR Dietary fat and fish intake and age-related maculopathy.  Arch Ophthalmol 2000;118 (3) 401- 404PubMedGoogle ScholarCrossref
34.
Seddon  JMGeorge  SRosner  B Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration.  Arch Ophthalmol 2006;124 (7) 995- 1001PubMedGoogle ScholarCrossref
35.
Fliesler  SJAnderson  RE Chemistry and metabolism of lipids in the vertebrate retina.  Prog Lipid Res 1983;22 (2) 79- 131PubMedGoogle ScholarCrossref
36.
SanGiovanni  JPChew  EY The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina.  Prog Retin Eye Res 2005;24 (1) 87- 138PubMedGoogle ScholarCrossref
37.
Kirschfeld  K Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells.  Proc R Soc Lond B Biol Sci 1982;216 (1202) 71- 85PubMedGoogle ScholarCrossref
38.
Donoso  LAKim  DFrost  ACallahan  AHageman  G The role of inflammation in the pathogenesis of age-related macular degeneration.  Surv Ophthalmol 2006;51 (2) 137- 152PubMedGoogle ScholarCrossref
39.
Despriet  DDKlaver  CCWitteman  JC  et al.  Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration.  JAMA 2006;296 (3) 301- 309PubMedGoogle ScholarCrossref
40.
Chong  EWKreis  AJWong  TYSimpson  JAGuymer  RH Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis.  Arch Ophthalmol 2008;126 (6) 826- 833PubMedGoogle ScholarCrossref
41.
Baghurst  KRecord  SJLeppard  P Red meat consumption in Australia: intakes, nutrient contribution and changes over time.  Aust J Nutr Diet 2000;57 (4) S1- S36Google Scholar
42.
Pérez-Jiménez  FRuano  JPerez-Martinez  PLopez-Segura  FLopez-Miranda  J The influence of olive oil on human health: not a question of fat alone.  Mol Nutr Food Res 2007;51 (10) 1199- 1208PubMedGoogle ScholarCrossref
43.
Kris-Etherton  PMHecker  KDBonanome  A  et al.  Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer.  Am J Med 2002;113 (9B) ((suppl 9B)) 71S- 88SPubMedGoogle ScholarCrossref
44.
Beauchamp  GKKeast  RSMorel  D  et al.  Phytochemistry: ibuprofen-like activity in extra-virgin olive oil.  Nature 2005;437 (7055) 45- 46PubMedGoogle ScholarCrossref
45.
SanGiovanni  JPChew  EYClemons  TE  et al. Age-Related Eye Disease Study Research Group, The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20.  Arch Ophthalmol 2007;125 (5) 671- 679PubMedGoogle ScholarCrossref
46.
Willett  W Issues in analysis and presentation of dietary data. Willett  W Nutritional Epidemiology. New York, NY Oxford University Press1998;321- 345Google Scholar
47.
Rothman  KJ No adjustments are needed for multiple comparisons.  Epidemiology 1990;1 (1) 43- 46PubMedGoogle ScholarCrossref
48.
Savitz  DAOlshan  AF Describing data requires no adjustment for multiple comparisons: a reply from Savitz and Olshan.  Am J Epidemiol 1998;147 (9) 813- 815PubMedGoogle ScholarCrossref
49.
Savitz  DAOlshan  AF Multiple comparisons and related issues in the interpretation of epidemiologic data.  Am J Epidemiol 1995;142 (9) 904- 908PubMedGoogle Scholar
50.
Feise  RJ Do multiple outcome measures require p-value adjustment?  BMC Med Res Methodol 2002;28PubMedGoogle ScholarCrossref
Epidemiology
May 11, 2009

Fat Consumption and Its Association With Age-Related Macular Degeneration

Author Affiliations

Author Affiliations: Centre for Eye Research Australia (Drs Chong, Robman, Aung, and Guymer, and Ms Dolphin), The Centre for Molecular, Environmental, Genetic and Analytic Epidemiology (Drs Simpson, English, and Giles), and Department of Medicine (Dr Hodge), the University of Melbourne, Melbourne, Australia; Cancer Epidemiology Centre, The Cancer Council Victoria, Carlton, Australia (Drs Simpson, English, and Giles); and Royal Victorian Eye and Ear Hospital, Melbourne, Australia (Dr Guymer).

 

LESLIEHYMANPhD

Arch Ophthalmol. 2009;127(5):674-680. doi:10.1001/archophthalmol.2009.60
Abstract

Objective  To evaluate associations between past dietary fat intake and the prevalence of age-related macular degeneration (AMD).

Methods  Six thousand seven hundred thirty-four participants aged 58 to 69 years in 1990-1994 took part in this cohort study. Participants' nutrient intakes were estimated from a food frequency questionnaire at baseline. At follow-up from 2003 to 2006, digital macula photographs of both eyes were evaluated for early and late AMD signs. Logistic regression was used to estimate odds ratios, with adjustment for age, smoking, and other potential confounders.

Results  Higher trans-unsaturated fat intake was associated with an increased prevalence of late AMD; the odds ratio comparing the highest with the lowest quartile of transfat was 1.76 (95% confidence interval, 0.92-3.37; P = .02). Higher ω-3 fatty acid intake (highest quartile vs lowest quartile) was inversely associated with early AMD (odds ratio, 0.85; 95% confidence interval, 0.71-1.02; P = .03). Olive oil intake (≥100 mL/week vs <1 mL/week) was associated with decreased prevalence of late AMD (odds ratio, 0.48; 95% confidence interval, 0.22-1.04; P = .03). No significant associations with AMD were observed for intakes of fish, total fat, butter, or margarine.

Conclusion  A diet low in trans-unsaturated fat and rich in ω-3 fatty acids and olive oil may reduce the risk of AMD.

Age-related macular degeneration (AMD) is the leading cause of severe visual loss among people aged older than 65 years in the developed world.1,2This progressive late-onset degenerative disease affects central vision, which can impair important activities, such as driving and reading. The ensuing disability not only results in significant personal costs but also places a large burden on health resources.3,4With the aging population, it is estimated that by 2020, the number of Americans with late (end-stage) AMD will increase by 50% to 3 million1; similarly, in Australia, AMD prevalence is expected to double, with direct costs to the community reaching to more than A$1 billion (>US $668 million) by the year 2020.3For these reasons, research into AMD prevention is important. Established risk factors for AMD include age, genetic markers,5and smoking, with the latter being the only consistently reported modifiable risk factor.6To date, the pathogenesis of AMD remains unknown, and with treatment only available for neovascular complications of AMD,7the identification of modifiable risk factors would have enormous implications.

Thus far, the evidence from published studies has been inconsistent, with some studies suggesting that higher intakes of vegetable fat and transfat increase the risk of AMD8,9and others not finding such risks.10Some studies have also suggested that diets rich in ω-3 or fish, as a proxy for ω-3 fatty acids, are protective against AMD.11,12As recommended by recent reviews in this area,12-14with only 3 published prospective cohort studies evaluating the associations between dietary fat, its subtypes,10,11or fish15and AMD and 1 cohort study evaluating AMD progression thus far,9more evidence from cohort studies is clearly needed. Therefore, we investigated these associations prospectively in a large cohort of Melbourne residents aged between 58 and 69 years at baseline examination.

Methods
Study design and participants

Participants were selected from the Melbourne Collaborative Cohort Study, a prospective cohort study of 41 528 Melbourne residents (17 049 men) aged 40 to 69 years at the time of recruitment from 1990 to 1994. Participants were recruited via the electoral register (registration to vote is compulsory for Australian citizens) and advertisements, details of which have been described else where.16,17We focused this study on participants who were aged between 58 and 69 years at baseline and were Australian or British born. Of 13 217 participants who satisfied these eligibility criteria, 11 617 were alive and residing in Victoria, Australia on May 1, 2003. Of these participants, 6734 (58%) attended follow-up between May 2003 and July 2006. During the follow-up period from May 2003 to July 2006, an additional 638 participants died and another 157 participants left Victoria. Despite higher attrition rates in an elderly cohort, our follow-up rate during a 13- to 16-year period was comparable with other well-conducted, long-term cohort studies with a younger age range of participants. The 15-year response rate in the Beaver Dam Eye Study was 43% (2119 participated at year 15 of 4926 participants aged 43-84 years at baseline)18; and the 10-year follow-up rate for the Blue Mountains Eye Study was 53% (1952 participated at year 10 of 3654 participants aged ≥49 years at baseline).19

Participants were excluded if they reported extreme energy intakes, indicating that food frequency questionnaires (FFQs) were improperly filled in (n = 110; <1st percentile and >99th percentile); if they reported acute myocardial infarction, angina, or diabetes at baseline and thus were likely to have changed their diet (n = 624); if they had missing dietary data (n = 1); or if they had missing or nongradable macula photographs owing to refusal, loss of an eye, or poor photograph quality secondary to cataract or small pupils (n = 395). After these exclusions, data from 5604 participants were available for analysis.

Baseline dietary assessment

Dietary intake from the year before baseline was estimated using a 121-item FFQ. The food list in the FFQ was derived from weighed food records in a sample of 810 Melbourne residents of similar age and ethnic origin to the Melbourne Collaborative Cohort Study cohort.20The FFQ included questions about the use of vitamins, fish oil, and cod liver oil supplements and was optically scanned into the database. Only yes/no answers were collected on fish and cod liver supplements without further detail on brand and dosage; hence, nutrients derived from supplements were not included in total nutrient intake. Nutrient intakes were calculated using standard sex-specific portion sizes from the weighed food records. The energy and fat contents in food were derived from Australian food composition tables.21Fatty acid composition of foods data were obtained from the Royal Melbourne Institute of Technology fatty acid database.22Carotenoid data were obtained from the 1998 US Department of Agriculture database.23In a random sample of 4439 Melbourne Collaborative Cohort Study participants, plasma phospholipid fatty acid levels were correlated with those estimated from the FFQ.24Similar to the correlation coefficients of other studies of nutrition using FFQs,25-27the corrected correlation coefficients in our study ranged from 0.38 to 0.78 for most fatty acids with weaker associations observed for saturated fatty acids. The reliability coefficients for estimates of intake obtained from the FFQ in a subset of 272 participants who completed the FFQ again after 12 months ranged from 0.33 to 0.56 for fatty acids and from 0.68 to 0.73 for food categories.

A structured interview was used to obtain demographic and lifestyle information, which included age, sex, smoking, and country of birth. Height, weight, and blood pressure were directly measured.

Ophthalmic data

At follow-up from May 2003 to July 2006, participants had both eyes photographed using a digital camera. Four 45° nonstereoscopic retinal photographs of the disc and macula of each eye were taken in each participant. The images were viewed immediately and taken again if unsatisfactory. Graders were physicians who had additional training in AMD grading. The 2 graders were masked and disagreements between them were resolved by a senior grader/ophthalmologist. Intergrader and intragrader reliability ranged from 0.64 to 0.76 and 0.60 to 1.00, respectively. To test the robustness of our readings and because there are many definitions of AMD, the 2 most commonly used definitions of early AMD were used: presence of drusen 63 μm or larger, with or without the presence of hyperpigmentation/hypopigmentation (International Classification of Age-Related Maculopathy28); and presence of large drusen, 125 μm or larger,29with or without the presence of hyperpigmentation/hypopigmentation. Late AMD was defined as evidence of choroidal neovascularization or geographic atrophy.

Statistical analysis

Multiple logistic regression was used to calculate odds ratios (ORs) for intakes of different fats and foods at baseline, with the presence or absence of AMD at follow-up as the outcome, adjusting for age; sex; smoking (never, former, or current smoker at baseline); intakes of energy (using the nutrient density adjustment method30), vitamins C and E, β-carotene, and zinc; and use of supplements (ascorbic acid, vitamin E, cod liver oil, and fish oil) at baseline. These variables were retained, as they changed the β coefficients by more than 5%. Dietary intake of nutrients was categorized into quartile groupings, with the first quartile used as the reference category. Food frequency distributions used to construct quartiles were based on the baseline data of all participants in the Melbourne Collaborative Cohort Study. Tests for trend across categories of nutrient intake were calculated by using the medians within each category as pseudocontinuous variables. Analyses stratified by median age of participants were also performed, and a test for interaction assessed using a multiplicative term and the likelihood ratio test. Analyses were performed using Stata, version 9.1 (Stata Corp, College Station, Texas).

Ethics approval

Cancer Council Victoria's Human Research Ethics Committee and the Royal Victorian Eye and Ear Hospital Human Research Ethics Committee approved the study protocols. Study participants gave written consent for the investigators to access their medical records and to collect and store their macula photographs, anthropometric measurements, and biologic samples. They also consented to passive follow-up conducted through record linkage to electoral rolls, electronic telephone books, the Victorian Cancer Registry, and death records. The study was carried out in accordance with the principles outlined in the Declaration of Helsinki.

Results

Of the 6734 eligible participants who attended the follow-up sessions, 6339 (94.1%) had gradable macula photographs. At the time when retinal photographs were taken, participants had a median age of 74 years (range, 66-85 years). We identified 1861 cases of early AMD (drusen ≥63 μm; 29.4%), 1011 cases of early AMD (large drusen, ≥125 μm; 16.0%), and 88 cases of late AMD (1.4%), including 36 cases of exudative AMD and 52 cases of geographic atrophy. After excluding participants with outlier energy intakes and those with a history of acute myocardial infarct, angina, or diabetes at baseline, 1680 cases of early AMD (drusen ≥63 μm; 30%), 910 cases of early AMD (large drusen, ≥125 μm; 16.3%), and 77 cases of late AMD (1.4%) were included in our analyses.

Table 1describes the characteristics of the participants and nonparticipants who were eligible to take part in this study. The distributions of age, smoking habits, education level, systolic blood pressure, and fatty acid and fish intakes were similar in the 2 groups. Participants had higher median olive oil intake compared with nonparticipants; however, the interquartile range was the same for the 2 groups.

Table 2summarizes the ORs for AMD at follow-up associated with baseline nutrient intakes. A higher trans-unsaturated fatty acid (TFA) intake tended to be directly associated with the prevalence of late AMD; the OR comparing the highest with the lowest quartile of TFA intake was 1.76 (95% confidence interval [CI], 0.92-3.37; P = .02). However, there was no evidence of a dose response across the quartile groupings (Table 2). No associations were seen between TFA intake and early AMD. Higher ω-3 fatty acid intake was weakly negatively associated with prevalence of early AMD (drusen ≥63 μm: OR, 0.85; 95% CI, 0.71-1.02; P = .03; large drusen, ≥125 μm: OR, 0.87; 95% CI, 0.70-1.08; P = .24). No other associations were observed between any grouping of fats or for any individual fatty acid and either early or late AMD. Further adjustment for other fat subtypes did not materially change the results.

Table 3summarizes the ORs for AMD in relation to intake of specific foods that have a high fat content. Higher intake of olive oil, which contains large amounts of oleic acid (monounsaturated fatty acid), was inversely associated with late AMD (P < .03). Fish intake (high marine ω-3 fatty acid source), cooked in various ways, showed no significant associations with AMD. No associations were seen between margarine (high TFA content) or butter (saturated fat) and AMD. Further analyses stratified by median age into younger and older groups revealed ORs in similar directions across fatty acid and food group intake; there was no evidence of effect modification by median age groups (results not shown).

Comment

In this cohort study of persons aged 58 to 69 years at baseline, we observed a direct association between baseline TFA intake and prevalence of late AMD; an inverse association between ω-3 fatty acids and prevalence of early AMD; and an inverse association between olive oil intake and late AMD. Trans-unsaturated fatty acids are formed when liquid vegetable fats are hardened through a process of partial hydrogenation and are commonly found in shortenings and processed foods.14Prospective epidemiological studies and case-control studies have shown TFA to increase the risk of coronary heart disease as a result of its adverse effects on lipids31and possibly owing to an association with inflammation.32A positive association between TFA and late AMD was found in our study. Two American cohort studies similarly reported TFA intake to be associated with an increased risk of AMD. In the first study of 261 participants with early AMD, TFA intake in the highest quartile compared with the lowest quartile was associated with an increased risk of AMD progression (relative risk, 2.39; 95% CI, 1.10-5.17; P = .008).9In the second, a pooled analysis of the Nurses' Health and the Health Professionals Follow-up studies, TFA intake in the highest compared with the lowest quintile was associated with an increased risk of any AMD (relative risk, 1.35; 95% CI, 1.02-1.80; P = .02).11

Various studies have shown ω-3 fatty acids and fish to be inversely associated with AMD,8-11,15,33,34resulting in a growing interest in the role of long-chain ω-3 fatty acids in the prevention of AMD. High levels of docosahexaenoic acid, a marine long-chain ω-3 fatty acid, is found in the rod outer segments of the retina.35These outer segments are constantly shed and turned over in the normal visual cycle. It has been suggested that deficiency of these fatty acids may initiate the onset of AMD. ω-3 Fatty acids have also been suggested to protect against oxidative-, inflammatory-, and age-associated damage to the retina,36postulated to be key pathogenic processes in AMD development.37-39Two recent systematic reviews evaluating ω-3 fatty acids in the prevention of AMD acknowledged that there was some evidence that ω-3 fatty acids might offer some protection toward AMD and that further cohort studies addressing this area were required.12,40Our study found ω-3 fatty acids, which included docosahexaenoic acid, eicosapentaenoic acid, and α-linolenic acid, to be inversely associated with early AMD (drusen ≥63 μm). However, when the other definition of early AMD was used, because there were approximately half the number of cases, the results were not statistically significant, though the point estimates for the ORs were similar. Although associations with long-chain marine ω-3 fatty acids, which have been postulated to be more relevant in reducing retinal damage (docosahexaenoic acid and eicosapentaenoic acid), and α-linolenic acid, individually, were not statistically significant, their ORs were in the protective direction. It should be noted that ω-3 fatty acid intakes from fish and cod liver oil supplementation were not included in the total dietary intake, which may or may not have resulted in an underestimation of the OR.

We found olive oil intake to be inversely associated with the prevalence of late AMD. Although olive oil contains approximately 85% oleic acid, neither monounsaturated fatty acids nor oleic acid intakes were associated with late AMD. In the Australian diet, meat and dairy products contribute similar amounts of monounsaturated fats as oils41; meat intake in our study was similarly not inversely associated with AMD. Thus, it is possible that other nonfat components of olive oil may contribute to this apparent protective effect.42Olive oil is rich in vitamin E, polyphenols, and oleocanthal; the first 2 substances are powerful antioxidants,43while the latter is a potent anti-inflammatory compound likened to ibuprofen.44Olive oil may also be a proxy for certain healthy lifestyles that may be associated with a decreased risk of AMD. Together with the association seen only with late AMD, our results need to be interpreted contextually. As ORs in the positive direction were seen in 1 cohort11and 2 case-control studies8,45that investigated monounsaturated fatty acids and AMD, though not statistically significant, this inverse relationship demands further confirmation in other cohort studies. Thus far, a significant inverse association between olive oil and AMD has not been reported in previous studies.

The strengths of our study include its large size and collection of dietary data in the early 1990s, when there was little interest in the association between dietary fatty acid intake and AMD. Our study had reasonably good follow-up during a 13-year period, with little evidence that participants and nonparticipants had different characteristics. However, our study does have limitations. First, although our FFQ showed good correlations with serum measurements,24limitations exist in all dietary studies that use the FFQ, as it is an imperfect instrument. Measurement errors of dietary factors estimated by the FFQ, administered only once at baseline, could have occurred. However, such errors are likely to be nondifferential, therefore attenuating our results. Another limitation with the FFQ was that it did not differentiate between nonoily and oily fish (rich in marine ω-3 fatty acids), which may have resulted in the lack of associations seen with fish in our analyses. Second, the issue of multiple comparisons in analyses of diet and disease should be considered, as most FFQs measure a large number of food items. Some proponents argue that the Pvalue should be adjusted according to the number of variables examined; however, the consensus in epidemiology is that this unduly reduces power, and individual associations should be evaluated on their own merits and conclusions drawn in light of consistency with information both internal and external to the study.46-50Similar to other studies evaluating dietary fat and AMD,10,11we did not adjust for multiple comparisons because our hypotheses were generated a priori; we interpreted our findings in the context of systematic reviews of the currently available literature12; and we checked for internal consistency using 2 definitions of early AMD. Nevertheless, in interpreting our results, the possibility of chance findings must be considered. Additionally, as few cases of late AMD were present, the study may lack power in evaluating the dietary associations with late AMD. Last, we were unable to exclude residual confounding due to inaccurately measured or unmeasured confounders.

In summary, we found that higher TFA intake was associated with an increased prevalence of late AMD, while ω-3 fatty acids and olive oil were associated with a reduced prevalence of early and late AMD, respectively. Our findings suggest that people who follow a diet low in processed foods high in TFA and rich in ω-3 fatty acids and olive oil might enjoy some protection from developing AMD.

Correspondence: Elaine W.-T. Chong, MD, PhD, MEpi, Centre for Eye Research Australia, University of Melbourne, 32 Gisborne St, East Melbourne 3002, Victoria, Australia (elaine.chong@eyeandear.org.au).

Submitted for Publication: February 8, 2008; final revision received December 15, 2008; accepted December 19, 2008.

Financial Disclosure: None reported.

Funding/Support: This study was supported by the National Health & Medical Research Council Public Health Scholarship (Dr Chong); National Health & Medical Research Council Career Development award (Dr Guymer); Royal Victorian Eye and Ear Hospital Wagstaff fellowship (Dr Robman); and National Health and Medical Research Council Program Grant 209057, Capacity Building Grant 251533, and Enabling Grant 396414 from the National Health and Medical Research Council. The ophthalmic component was funded by the Ophthalmic Research Institute of Australia, John Reid Charitable Trust, and Perpetual Trustees.

Disclaimer: None of the funding organizations participated in the analysis or writing of the manuscript.

Additional Contributions: We thank the original investigators and team, who recruited the participants and who continue working on follow-up, for their contribution; and also the many thousands of Melbourne residents who continue to participate in the Melbourne Collaborative Cohort Study.

References
1.
Friedman  DSO'Colmain  BJMuñoz  B  et al. Eye Diseases Prevalence Research Group, Prevalence of age-related macular degeneration in the United States.  Arch Ophthalmol 2004;122 (4) 564- 572PubMedGoogle ScholarCrossref
2.
VanNewkirk  MRNanjan  MBWang  JJMitchell  PTaylor  HRMcCarty  CA The prevalence of age-related maculopathy: the visual impairment project.  Ophthalmology 2000;107 (8) 1593- 1600PubMedGoogle ScholarCrossref
3.
 Clear Insight: The Economic Impact and Cost of Visual Loss in Australia, Melbourne.   Access Economics Pty Limited. Prepared for Eye Research Australia 2004;Google Scholar
4.
Brown  MMBrown  GCSharma  S  et al.  The burden of age-related macular degeneration: a value-based analysis.  Curr Opin Ophthalmol 2006;17 (3) 257- 266PubMedGoogle Scholar
5.
Haines  JLHauser  MASchmidt  S  et al.  Complement factor H variant increases the risk of age-related macular degeneration.  Science 2005;308 (5720) 419- 421PubMedGoogle ScholarCrossref
6.
Thornton  JEdwards  RMitchell  PHarrison  RABuchan  IKelly  SP Smoking and age-related macular degeneration: a review of association.  Eye 2005;19 (9) 935- 944PubMedGoogle ScholarCrossref
7.
Brown  DMKaiser  PKMichels  M  et al. ANCHOR Study Group, Ranibizumab versus verteporfin for neovascular age-related macular degeneration.  N Engl J Med 2006;355 (14) 1432- 1444PubMedGoogle ScholarCrossref
8.
Seddon  JMRosner  BSperduto  RD  et al.  Dietary fat and risk for advanced age-related macular degeneration.  Arch Ophthalmol 2001;119 (8) 1191- 1199PubMedGoogle ScholarCrossref
9.
Seddon  JMCote  JRosner  B Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake.  Arch Ophthalmol 2003;121 (12) 1728- 1737PubMedGoogle ScholarCrossref
10.
Chua  BFlood  VRochtchina  EWang  JJSmith  WMitchell  P Dietary fatty acids and the 5-year incidence of age-related maculopathy.  Arch Ophthalmol 2006;124 (7) 981- 986PubMedGoogle ScholarCrossref
11.
Cho  EHung  SWillett  WC  et al.  Prospective study of dietary fat and the risk of age-related macular degeneration.  Am J Clin Nutr 2001;73 (2) 209- 218PubMedGoogle Scholar
12.
Hodge  WGSchachter  HMBarnes  D  et al.  Efficacy of omega-3 fatty acids in preventing age-related macular degeneration: a systematic review.  Ophthalmology 2006;113 (7) 1165- 1172, quiz 1172-1173, 1178PubMedGoogle ScholarCrossref
13.
Guymer  RHChong  EW Modifiable risk factors for age-related macular degeneration.  Med J Aust 2006;184 (9) 455- 458PubMedGoogle Scholar
14.
Chong  EWSinclair  AJGuymer  RH Facts on fats.  Clin Experiment Ophthalmol 2006;34 (5) 464- 471PubMedGoogle ScholarCrossref
15.
Arnarsson  ASverrisson  TStefansson  E  et al.  Risk factors for five-year incident age-related macular degeneration: the Reykjavik Eye Study.  Am J Ophthalmol 2006;142 (3) 419- 428PubMedGoogle ScholarCrossref
16.
Giles  GG Epidemiology of food and disease: The Melbourne cohort study.  Asia Pac J Clin Nutr 2004;13 ((suppl)) S30Google Scholar
17.
Giles  GGEnglish  DR The Melbourne Collaborative Cohort Study.  IARC Sci Publ 2002;15669- 70PubMedGoogle Scholar
18.
Klein  RKlein  BEMoss  SEWong  TY The relationship of retinopathy in persons without diabetes to the 15-year incidence of diabetes and hypertension: Beaver Dam Eye Study.  Trans Am Ophthalmol Soc 2006;10498- 107PubMedGoogle Scholar
19.
Tan  JSWang  JJFlood  VRochtchina  ESmith  WMitchell  P Dietary antioxidants and the long-term incidence of age-related macular degeneration: The Blue Mountains Eye Study.  Ophthalmology 2008;115 (2) 334- 341PubMedGoogle ScholarCrossref
20.
Ireland  PJolley  DGiles  G  et al.  Development of the Melbourne FFQ: a food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort.  Asia Pac J Clin Nutr 1994;319- 31Google Scholar
21.
Lewis  JMilligan  GHunt  A NUTTAB95 Nutrient Data Table for Use in Australia.  Canberra Australian Government Publishing Service1995;
22.
RMIT Lipid Research Group, Fatty acid compositional database: Xyris Software.  Brisbane, Australia RMIT Lipid Research Group2001;
23.
US Department of Agriculture Nutrition Coordinating Center, USDA-NCC Carotenoid Database for US Foods.  Washington, DC US Dept of Agriculture Nutrition Coordinating Center1998;
24.
Hodge  AMSimpson  JAGibson  RA  et al.  Plasma phospholipid fatty acid composition as a biomarker of habitual dietary fat intake in an ethnically diverse cohort [published online ahead of print September 7, 2006].  Nutr Metab Cardiovasc Dis 2007;17 (6) 415- 426PubMedGoogle ScholarCrossref
25.
Hunter  D Biochemical indicators of dietary intake. Willett  W Nutritional Epidemiology. New York, NY Oxford University Press1998;174- 243Google Scholar
26.
Hunter  DJRimm  EBSacks  FM  et al.  Comparison of measures of fatty acid intake by subcutaneous fat aspirate, food frequency questionnaire, and diet records in a free-living population of US men.  Am J Epidemiol 1992;135 (4) 418- 427PubMedGoogle Scholar
27.
Ma  JFolsom  ARShahar  EEckfeldt  JHThe Atherosclerosis Risk in Communities (ARIC) Study Investigators, Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults.  Am J Clin Nutr 1995;62 (3) 564- 571PubMedGoogle Scholar
28.
Bird  ACBressler  NMBressler  SB  et al. The International ARM Epidemiological Study Group, An international classification and grading system for age-related maculopathy and age-related macular degeneration.  Surv Ophthalmol 1995;39 (5) 367- 374PubMedGoogle ScholarCrossref
29.
Ferris  FLDavis  MDClemons  TE  et al. Age-Related Eye Disease Study (AREDS) Research Group, A simplified severity scale for age-related macular degeneration: AREDS Report No. 18.  Arch Ophthalmol 2005;123 (11) 1570- 1574PubMedGoogle ScholarCrossref
30.
Brown  CCKipnis  VFreedman  LSHartman  AMSchatzkin  AWacholder  S Energy adjustment methods for nutritional epidemiology: the effect of categorization.  Am J Epidemiol 1994;139 (3) 323- 338PubMedGoogle Scholar
31.
Willett  WC Trans fatty acids and cardiovascular disease-epidemiological data.  Atheroscler Suppl 2006;7 (2) 5- 8PubMedGoogle ScholarCrossref
32.
Lopez-Garcia  ESchulze  MBMeigs  JB  et al.  Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction.  J Nutr 2005;135 (3) 562- 566PubMedGoogle Scholar
33.
Smith  WMitchell  PLeeder  SR Dietary fat and fish intake and age-related maculopathy.  Arch Ophthalmol 2000;118 (3) 401- 404PubMedGoogle ScholarCrossref
34.
Seddon  JMGeorge  SRosner  B Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration.  Arch Ophthalmol 2006;124 (7) 995- 1001PubMedGoogle ScholarCrossref
35.
Fliesler  SJAnderson  RE Chemistry and metabolism of lipids in the vertebrate retina.  Prog Lipid Res 1983;22 (2) 79- 131PubMedGoogle ScholarCrossref
36.
SanGiovanni  JPChew  EY The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina.  Prog Retin Eye Res 2005;24 (1) 87- 138PubMedGoogle ScholarCrossref
37.
Kirschfeld  K Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells.  Proc R Soc Lond B Biol Sci 1982;216 (1202) 71- 85PubMedGoogle ScholarCrossref
38.
Donoso  LAKim  DFrost  ACallahan  AHageman  G The role of inflammation in the pathogenesis of age-related macular degeneration.  Surv Ophthalmol 2006;51 (2) 137- 152PubMedGoogle ScholarCrossref
39.
Despriet  DDKlaver  CCWitteman  JC  et al.  Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration.  JAMA 2006;296 (3) 301- 309PubMedGoogle ScholarCrossref
40.
Chong  EWKreis  AJWong  TYSimpson  JAGuymer  RH Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis.  Arch Ophthalmol 2008;126 (6) 826- 833PubMedGoogle ScholarCrossref
41.
Baghurst  KRecord  SJLeppard  P Red meat consumption in Australia: intakes, nutrient contribution and changes over time.  Aust J Nutr Diet 2000;57 (4) S1- S36Google Scholar
42.
Pérez-Jiménez  FRuano  JPerez-Martinez  PLopez-Segura  FLopez-Miranda  J The influence of olive oil on human health: not a question of fat alone.  Mol Nutr Food Res 2007;51 (10) 1199- 1208PubMedGoogle ScholarCrossref
43.
Kris-Etherton  PMHecker  KDBonanome  A  et al.  Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer.  Am J Med 2002;113 (9B) ((suppl 9B)) 71S- 88SPubMedGoogle ScholarCrossref
44.
Beauchamp  GKKeast  RSMorel  D  et al.  Phytochemistry: ibuprofen-like activity in extra-virgin olive oil.  Nature 2005;437 (7055) 45- 46PubMedGoogle ScholarCrossref
45.
SanGiovanni  JPChew  EYClemons  TE  et al. Age-Related Eye Disease Study Research Group, The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20.  Arch Ophthalmol 2007;125 (5) 671- 679PubMedGoogle ScholarCrossref
46.
Willett  W Issues in analysis and presentation of dietary data. Willett  W Nutritional Epidemiology. New York, NY Oxford University Press1998;321- 345Google Scholar
47.
Rothman  KJ No adjustments are needed for multiple comparisons.  Epidemiology 1990;1 (1) 43- 46PubMedGoogle ScholarCrossref
48.
Savitz  DAOlshan  AF Describing data requires no adjustment for multiple comparisons: a reply from Savitz and Olshan.  Am J Epidemiol 1998;147 (9) 813- 815PubMedGoogle ScholarCrossref
49.
Savitz  DAOlshan  AF Multiple comparisons and related issues in the interpretation of epidemiologic data.  Am J Epidemiol 1995;142 (9) 904- 908PubMedGoogle Scholar
50.
Feise  RJ Do multiple outcome measures require p-value adjustment?  BMC Med Res Methodol 2002;28PubMedGoogle ScholarCrossref
×