Ophthalmological Features Associated With COL4A1 Mutations | Genetics and Genomics | JAMA Ophthalmology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Gould  DBPhalan  FCBreedveld  GJ  et al.  Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly.  Science 2005;308 (5725) 1167- 1171PubMedGoogle ScholarCrossref
Gould  DBPhalan  FCvan Mil  SE  et al.  Role of COL4A1 in small-vessel disease and hemorrhagic stroke.  N Engl J Med 2006;354 (14) 1489- 1496PubMedGoogle ScholarCrossref
van der Knaap  MSSmit  LMBarkhof  F  et al.  Neonatal porencephaly and adult stroke related to mutations in collagen IV A1.  Ann Neurol 2006;59 (3) 504- 511PubMedGoogle ScholarCrossref
Breedveld  Gde Coo  IFLequin  MH  et al.  Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly.  J Med Genet 2006;43 (6) 490- 495PubMedGoogle ScholarCrossref
Vahedi  K Massin  PGuichard  JP  et al.  Hereditary infantile hemiparesis, retinal arteriolar tortuosity, and leukoencephalopathy.  Neurology 2003;60 (1) 57- 63PubMedGoogle ScholarCrossref
Sibon  ICoupry  IMenegon  P  et al.  COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke.  Ann Neurol 2007;62 (2) 177- 184PubMedGoogle ScholarCrossref
Plaisier  EGribouval  OAlamowitch  S  et al.  COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps.  N Engl J Med 2007;357 (26) 2687- 2695PubMedGoogle ScholarCrossref
Gould  DBMarchant  JKSavinova  OVSmith  RSJohn  SW Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis.  Hum Mol Genet 2007;16 (7) 798- 807PubMedGoogle ScholarCrossref
Lines  MAKozlowski  KWalter  MA Molecular genetics of Axenfeld-Rieger malformations.  Hum Mol Genet 2002;11 (10) 1177- 1184PubMedGoogle ScholarCrossref
Alward  WL Axenfeld-Rieger syndrome in the age of molecular genetics.  Am J Ophthalmol 2000;130 (1) 107- 115PubMedGoogle ScholarCrossref
Bekir  NAGungor  K Atrial septal defect with interatrial aneurysm and Axenfeld-Rieger syndrome.  Acta Ophthalmol Scand 2000;78 (1) 101- 103PubMedGoogle ScholarCrossref
Grosso  SFarnetani  MABerardi  R  et al.  Familial Axenfeld-Rieger anomaly, cardiac malformations, and sensorineural hearing loss: a provisionally unique genetic syndrome?  Am J Med Genet 2002;111 (2) 182- 186PubMedGoogle ScholarCrossref
Cunningham  ET  JrEliott  DMiller  NRMaumenee  IHGreen  WR Familial Axenfeld-Rieger anomaly, atrial septal defect, and sensorineural hearing loss: a possible new genetic syndrome.  Arch Ophthalmol 1998;116 (1) 78- 82PubMedGoogle ScholarCrossref
McCann  EKaye  SBNewman  WNorbury  GBlack  GCEllis  IH Novel phenotype of craniosynostosis and ocular anterior chamber dysgenesis with a fibroblast growth factor receptor 2 mutation.  Am J Med Genet A 2005;138A (3) 278- 281PubMedGoogle ScholarCrossref
Glaser  TWalton  DSMaas  RL Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene.  Nat Genet 1992;2 (3) 232- 239PubMedGoogle ScholarCrossref
Semina  EVReiter  RLeysens  NJ  et al.  Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome.  Nat Genet 1996;14 (4) 392- 399PubMedGoogle ScholarCrossref
Nishimura  DYSwiderski  REAlward  WL  et al.  The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25.  Nat Genet 1998;19 (2) 140- 147PubMedGoogle ScholarCrossref
Phillips  JCdel Bono  EAHaines  JL  et al.  A second locus for Rieger syndrome maps to chromosome 13q14.  Am J Hum Genet 1996;59 (3) 613- 619PubMedGoogle Scholar
Gould  DBJohn  SW Anterior segment dysgenesis and the developmental glaucomas are complex traits.  Hum Mol Genet 2002;11 (10) 1185- 1193PubMedGoogle ScholarCrossref
Van Agtmael  TSchlotzer-Schrehardt  U McKie  L  et al.  Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy.  Hum Mol Genet 2005;14 (21) 3161- 3168PubMedGoogle ScholarCrossref
Favor  JGloeckner  CJJanik  D  et al.  Type IV procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: an extension of the Col4a1 allelic series and the identification of the first two Col4a2 mutant alleles.  Genetics 2007;175 (2) 725- 736PubMedGoogle ScholarCrossref
Cvekl  ATamm  ER Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases.  Bioessays 2004;26 (4) 374- 386PubMedGoogle ScholarCrossref
Doward  WPerveen  RLloyd  ICRidgway  AEWilson  LBlack  GC A mutation in the RIEG1 gene associated with Peters' anomaly.  J Med Genet 1999;36 (2) 152- 155PubMedGoogle Scholar
Nishimura  DYSearby  CCAlward  WL  et al.  A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye.  Am J Hum Genet 2001;68 (2) 364- 372PubMedGoogle ScholarCrossref
Ashery-Padan  RGruss  P Pax6 lights-up the way for eye development.  Curr Opin Cell Biol 2001;13 (6) 706- 714PubMedGoogle ScholarCrossref
Jordan  THanson  IZaletayev  D  et al.  The human PAX6 gene is mutated in two patients with aniridia.  Nat Genet 1992;1 (5) 328- 332PubMedGoogle ScholarCrossref
Prosser  Jvan Heyningen  V PAX6 mutations reviewed.  Hum Mutat 1998;11 (2) 93- 108PubMedGoogle ScholarCrossref
Zenker  MAigner  TWendler  O  et al.  Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities.  Hum Mol Genet 2004;13 (21) 2625- 2632PubMedGoogle ScholarCrossref
Ylikärppä  REklund  LSormunen  R  et al.  Lack of type XVIII collagen results in anterior ocular defects.  FASEB J 2003;17 (15) 2257- 2259PubMedGoogle Scholar
Kalluri  R Basement membranes: structure, assembly and role in tumour angiogenesis.  Nat Rev Cancer 2003;3 (6) 422- 433PubMedGoogle ScholarCrossref
Pöschl  ESchlotzer-Schrehardt  UBrachvogel  BSaito  KNinomiya  YMayer  U Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development.  Development 2004;131 (7) 1619- 1628PubMedGoogle ScholarCrossref
Kelley  PBSado  YDuncan  MK Collagen IV in the developing lens capsule.  Matrix Biol 2002;21 (5) 415- 423PubMedGoogle ScholarCrossref
Genis-Galvez  JM Role of the lens in the morphogenesis of the iris and cornea.  Nature 1966;210 (5032) 209- 210PubMedGoogle ScholarCrossref
Hjalt  TAAmendt  BAMurray  JC PITX2 regulates procollagen lysyl hydroxylase (PLOD) gene expression: implications for the pathology of Rieger syndrome.  J Cell Biol 2001;152 (3) 545- 552PubMedGoogle ScholarCrossref
Heikkinen  JToppinen  TYeowell  H  et al.  Duplication of seven exons in the lysyl hydroxylase gene is associated with longer forms of a repetitive sequence within the gene and is a common cause for the type VI variant of Ehlers-Danlos syndrome.  Am J Hum Genet 1997;60 (1) 48- 56PubMedGoogle Scholar
Ophthalmic Molecular Genetics
April 2010

Ophthalmological Features Associated With COL4A1 Mutations

Author Affiliations

Author Affiliations: Laboratoire de Génétique Humaine, Université Victor Segalen Bordeaux 2, Université Bordeaux 2, Bordeaux (Drs Coupry and Goizet); Fédération des Neurosciences Cliniques (Drs Sibon, Rouanet, and Goizet), Service d’ophtalmologie (Dr Mortemousque), and Service de Génétique Médicale (Dr Goizet), Hôpital Pellegrin, Université Bordeaux 2, CHU Bordeaux, Bordeaux; AP-HP, Laboratoire de Génétique Moléculaire, hôpital Lariboisière, Paris (Dr Mine); INSERM UMR-S 740, Paris, France (Dr Mine).



Arch Ophthalmol. 2010;128(4):483-489. doi:10.1001/archophthalmol.2010.42

Objective  To investigate the wide variability of ocular manifestations associated with mutations in the COL4A1 gene that encodes collagen IVα1.

Methods  We clinically evaluated 7 patients from 2 unrelated families in whom ocular features segregated with COL4A1 mutations that were identified by direct sequencing.

Results  The G2159A transition (c.2159G>A) that leads to the missense mutation p.Gly720Asp was identified in family A. An ocular phenotype of variable severity was observed in all affected relatives. The missense mutation c.2263G>A, p.Gly755Arg was identified in family B. One patient from family B also displayed notable ocular features.

Conclusions  The COL4A1 mutations may be associated with various ophthalmologic developmental anomalies of anterior segment dysgenesis type, which are reminiscent of Axenfeld-Rieger anomalies (ARA). Cerebrovascular disorders should be added to the list of signs potentially associated with ARA.

Clinical Relevance  These data suggest that cerebral magnetic resonance imaging may be recommended in the clinical treatment of patients with apparently isolated ARA, even when neurological symptoms or signs are lacking.