[Skip to Navigation]
Sign In
Table 1. Genes and Chromosomal Loci Associated With the Corneal Dystrophies
Genes and Chromosomal Loci Associated With the Corneal Dystrophies
Table 2. Nucleotide and Amino Acid Changes Associated With Classic Forms of TGFBI Dystrophies
Nucleotide and Amino Acid Changes Associated With Classic Forms of TGFBI Dystrophies
Table 3. Mutations Associated With Meesmann Corneal Dystrophy
Mutations Associated With Meesmann Corneal Dystrophy
Table 4. Nucleotide and Amino Acid Changes Associated With Variant LCD, GCD, and CDB I
Nucleotide and Amino Acid Changes Associated With Variant LCD, GCD, and CDB I
1.
Aldave  AJYellore  VSSelf  CAHolsclaw  DSmall  K The usefulness of buccal swabs for mutation screening in patients with suspected corneal dystrophies.  Ophthalmology 2004;1111407- 1409PubMedGoogle Scholar
2.
Aldave  AJ The clinical utility of genetic analysis in the diagnosis and management of inherited corneal disorders.  Contemp Ophthalmol 2005;41- 10Google Scholar
3.
Tanhehco  TYEifrig  DE  JrSchwab  IRRapuano  CJKlintworth  GK Two cases of Reis-Bucklers corneal dystrophy (granular corneal dystrophy type III) caused by spontaneous mutations in the TGFBI gene.  Arch Ophthalmol 2006;124589- 593PubMedGoogle Scholar
4.
Aldave  AJGutmark  JGYellore  VS  et al.  Lattice corneal dystrophy associated with the Ala546Asp and Pro551Gln missense changes in the TGFBI gene.  Am J Ophthalmol 2004;138772- 781PubMedGoogle Scholar
5.
Aldave  AJRayner  SAKing  JAAffeldt  JAYellore  VS A unique corneal dystrophy of Bowman's layer and stroma associated with the Gly623Asp mutation in the transforming growth factor beta–induced (TGFBI) gene.  Ophthalmology 2005;1121017- 1022PubMedGoogle Scholar
6.
Klintworth  GKBao  WAfshari  NA Two mutations in the TGFBI (BIGH3) gene associated with lattice corneal dystrophy in an extensively studied family.  Invest Ophthalmol Vis Sci 2004;451382- 1388PubMedGoogle Scholar
7.
Aldave  AJRayner  SAKim  BTPrechanond  AYellore  VS Unilateral lattice corneal dystrophy associated with the novel His572del mutation in the TGFBI gene.  Mol Vis 2006;12142- 146PubMedGoogle Scholar
8.
Hirano  KHotta  YNakamura  MFujiki  KKanai  AYamamoto  N Late-onset form of lattice corneal dystrophy caused by leu527Arg mutation of the TGFBI gene.  Cornea 2001;20525- 529PubMedGoogle Scholar
9.
Sridhar  MSLaibson  PREagle  RC  JrRapuano  CJCohen  EJ Unilateral corneal lattice dystrophy.  Cornea 2001;20850- 852PubMedGoogle Scholar
10.
Sridhar  MSPandrowala  HRao  GN Unilateral lattice dystrophy in an elderly patient.  Eye 2002;16653- 655PubMedGoogle Scholar
11.
Stewart  HBlack  GCDonnai  D  et al.  A mutation within exon 14 of the TGFBI (BIGH3) gene on chromosome 5q31causes an asymmetric, late-onset form of lattice corneal dystrophy.  Ophthalmology 1999;106964- 970PubMedGoogle Scholar
12.
Klintworth  GKVogel  FS Macular corneal dystrophy: an inherited acid mucopolysaccharide storage disease of the corneal fibroblast.  Am J Pathol 1964;45565- 586PubMedGoogle Scholar
13.
Krafchak  CMPawar  HMoroi  SE  et al.  Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells.  Am J Hum Genet 2005;77694- 708PubMedGoogle Scholar
14.
Bron  AJWilliams  HPCarruthers  ME Hereditary crystalline stromal dystrophy of Schnyder, I: clinical features of a family with hyperlipoproteinaemia.  Br J Ophthalmol 1972;56383- 399PubMedGoogle Scholar
15.
Ridgway  AEAkhtar  SMunier  FL  et al.  Ultrastructural and molecular analysis of Bowman's layer corneal dystrophies:an epithelial origin?  Invest Ophthalmol Vis Sci 2000;413286- 3292PubMedGoogle Scholar
16.
Akhtar  SMeek  KMRidgway  AEBonshek  REBron  AJ Deposits and proteoglycan changes in primary and recurrent granular dystrophy of the cornea.  Arch Ophthalmol 1999;117310- 321PubMedGoogle Scholar
17.
Johnson  BLBrown  SIZaidman  GW A light and electron microscopic study of recurrent granular dystrophy of the cornea.  Am J Ophthalmol 1981;9249- 58PubMedGoogle Scholar
18.
Coleman  CMHannush  SCovello  SPSmith  FJUitto  JMcLean  WH A novel mutation in the helix termination motif of keratin K12 in a US family with Meesmann corneal dystrophy.  Am J Ophthalmol 1999;128687- 691PubMedGoogle Scholar
19.
Corden  LDSwensson  OSwensson  B  et al.  A novel keratin 12 mutation in a German kindred with Meesmann's corneal dystrophy.  Br J Ophthalmol 2000;84527- 530PubMedGoogle Scholar
20.
Corden  LDSwensson  OSwensson  B  et al.  Molecular genetics of Meesmann's corneal dystrophy: ancestral and novel mutations in keratin 12 (K12) and complete sequence of the human KRT12 gene.  Exp Eye Res 2000;7041- 49PubMedGoogle Scholar
21.
Irvine  ADColeman  CMMoore  JE  et al.  A novel mutation in KRT12 associated with Meesmann's epithelial corneal dystrophy.  Br J Ophthalmol 2002;86729- 732PubMedGoogle Scholar
22.
Irvine  ADCorden  LDSwensson  O  et al.  Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy.  Nat Genet 1997;16184- 187PubMedGoogle Scholar
23.
Nishida  KHonma  YDota  A  et al.  Isolation and chromosomal localization of a cornea-specific human keratin 12 gene and detection of four mutations in Meesmann corneal epithelial dystrophy.  Am J Hum Genet 1997;611268- 1275PubMedGoogle Scholar
24.
Takahashi  KMurakami  AOkisaka  SKimura  TKanai  A Heterozygous Ala137Pro mutation in keratin 12 gene found in Japanese with Meesmann's corneal dystrophy.  Jpn J Ophthalmol 2002;46673- 674PubMedGoogle Scholar
25.
Nichini  OManzi  VMunier  FLSchorderet  DF Meesmann corneal dystrophy (MECD): report of 2 families and a novel mutation in the cornea specific keratin 12 (KRT12)gene.  Ophthalmic Genet 2005;26169- 173PubMedGoogle Scholar
26.
Chen  YTTseng  SHChao  SC Novel mutations in the helix termination motif of keratin 3 and keratin 12 in 2 Taiwanese families with Meesmann corneal dystrophy.  Cornea 2005;24928- 932PubMedGoogle Scholar
27.
Yoon  MKWarren  JFHolsclaw  DSGritz  DCMargolis  TP A novel arginine substitution mutation in 1A domain and a novel 27bp insertion mutation in 2B domain of keratin 12 gene associated with Meesmann's corneal dystrophy.  Br J Ophthalmol 2004;88752- 756PubMedGoogle Scholar
28.
Lisch  WButtner  AOeffner  F  et al.  Lisch corneal dystrophy is genetically distinct from Meesmann corneal dystrophy and maps to xp22.3.  Am J Ophthalmol 2000;130461- 468PubMedGoogle Scholar
29.
Lisch  WSteuhl  KPLisch  C  et al.  A new, band-shaped and whorled microcystic dystrophy of the corneal epithelium.  Am J Ophthalmol 1992;11435- 44PubMedGoogle Scholar
30.
Alvarez-Fischer  Mde Toledo  JABarraquer  RI Lisch corneal dystrophy.  Cornea 2005;24494- 495PubMedGoogle Scholar
31.
Charles  NCYoung  JAKumar  A  et al.  Band-shaped and whorled microcystic dystrophy of the corneal epithelium.  Ophthalmology 2000;1071761- 1764PubMedGoogle Scholar
32.
Robin  SBEpstein  RJKornmehl  EW Band-shaped, whorled microcystic corneal dystrophy.  Am J Ophthalmol 1994;117543- 544PubMedGoogle Scholar
33.
Reis  W Familiare, fleckige Hornhautentartung.  Dtsch Med Wochenschr 1917;43575Google Scholar
34.
Bücklers  M Uber eine weitere familiare Hornhaut dystrophie (Reis).  Klin Monatsbl Augenheilkd 1949;114386- 397Google Scholar
35.
Thiel  HJBehnke  H Eine bisher unbekannte, subepitheliale hereditare Hornhaut-dystrophie.  Klin Monatsbl Augenheilkd 1967;150862- 874PubMedGoogle Scholar
36.
Küchle  MGreen  WRVolcker  HEBarraquer  J Reevaluation of corneal dystrophies of Bowman's layer and the anterior stroma (Reis-Bucklers and Thiel-Behnke types): a light and electron microscopic study of eight corneas and a review of the literature.  Cornea 1995;14333- 354PubMedGoogle Scholar
37.
Okada  MYamamoto  STsujikawa  M  et al.  Two distinct kerato-epithelin mutations in Reis-Bucklers corneal dystrophy.  Am J Ophthalmol 1998;126535- 542PubMedGoogle Scholar
38.
Sorour  HMYee  SBPeterson  NJ  et al.  Recurrence of chromosome 10 Thiel-Behnke corneal dystrophy (CDB2) after excimer laser phototherapeutic keratectomy or penetrating keratoplasty.  Cornea 2005;2445- 50PubMedGoogle Scholar
39.
Sullivan  LSZhao  XBowne  SJ  et al.  Exclusion of the human collagen type XVII (COL17A1) gene as the cause of Thiel-Behnke corneal dystrophy (CDB2) on chromosome 10q23-q25.  Curr Eye Res 2003;27223- 226PubMedGoogle Scholar
40.
Yee  RWSullivan  LSLai  HT  et al.  Linkage mapping of Thiel-Behnke corneal dystrophy (CDB2) to chromosome 10q23-q24.  Genomics 1997;46152- 154PubMedGoogle Scholar
41.
Stone  EMMathers  WDRosenwasser  GO  et al.  Three autosomal dominant corneal dystrophies map to chromosome 5q.  Nat Genet 1994;647- 51PubMedGoogle Scholar
42.
Munier  FLKorvatska  EDjemai  A  et al.  Kerato-epithelin mutations in four 5q31-linked corneal dystrophies.  Nat Genet 1997;15247- 251PubMedGoogle Scholar
43.
Ha  NTCung le  XChau  HM  et al.  A novel mutation of the TGFBI gene found in a Vietnamese family with atypical granular corneal dystrophy.  Jpn J Ophthalmol 2003;47246- 248PubMedGoogle Scholar
44.
Cung le  XHa  NTChau  HM  et al.  Mutation analysis of the TGFBI gene in Vietnamese with granular and Avellino corneal dystrophy.  Jpn J Ophthalmol 2004;4812- 16PubMedGoogle Scholar
45.
Munier  FLFrueh  BEOthenin-Girard  P  et al.  BIGH3 mutation spectrum in corneal dystrophies.  Invest Ophthalmol Vis Sci 2002;43949- 954PubMedGoogle Scholar
46.
Stewart  HSRidgway  AEDixon  MJBonshek  RParveen  RBlack  G Heterogeneity in granular corneal dystrophy: identification of three causative mutations in the TGFBI (BIGH3) gene: lessons for corneal amyloidogenesis.  Hum Mutat 1999;14126- 132PubMedGoogle Scholar
47.
Dighiero  PNiel  FEllies  P  et al.  Histologic phenotype-genotype correlation of corneal dystrophies associated with eight distinct mutations in the TGFBI gene.  Ophthalmology 2001;108818- 823PubMedGoogle Scholar
48.
Dighiero  PDrunat  SD’Hermies  FRenard  GDelpech  MValleix  S A novel variant of granular corneal dystrophy caused by association of 2 mutations in the TGFBI gene—R124L and ΔT125-ΔE126.  Arch Ophthalmol 2000;118814- 818PubMedGoogle Scholar
49.
Fujiki  KNakayasu  KKanai  A Corneal dystrophies in Japan.  J Hum Genet 2001;46431- 435PubMedGoogle Scholar
50.
Mashima  YYamamoto  SInoue  Y  et al.  Association of autosomal dominantly inherited corneal dystrophies with BIGH3 gene mutations in Japan.  Am J Ophthalmol 2000;130516- 517PubMedGoogle Scholar
51.
Ha  NTFujiki  KHotta  YNakayasu  KKanai  A Q118X mutation of M1S1 gene caused gelatinous drop-like corneal dystrophy: the P501T of BIGH3 gene found in a family with gelatinous drop-like corneal dystrophy.  Am J Ophthalmol 2000;130119- 120PubMedGoogle Scholar
52.
Kawasaki  SNishida  KQuantock  AJDota  ABennett  KKinoshita  S Amyloid and Pro501 Thr-mutated βig-h3 gene product colocalize in lattice corneal dystrophy type IIIA.  Am J Ophthalmol 1999;127456- 458PubMedGoogle Scholar
53.
Tsujikawa  KTsujikawa  MYamamoto  SFujikado  TTano  Y Allelic homogeneity due to a founder mutation in Japanese patients with lattice corneal dystrophy type IIIA.  Am J Med Genet 2002;11320- 22PubMedGoogle Scholar
54.
Yamamoto  SOkada  MTsujikawa  M  et al.  A kerato-epithelin (βig-h3) mutation in lattice corneal dystrophy type IIIA.  Am J Hum Genet 1998;62719- 722PubMedGoogle Scholar
55.
Tian  XFujiki  KWang  W  et al.  Novel mutation (V505D) of the TGFBI gene found in a Chinese family with lattice corneal dystrophy, type I.  Jpn J Ophthalmol 2005;4984- 88PubMedGoogle Scholar
56.
Fujiki  KHotta  YNakayasu  K  et al.  Six different mutations of TGFBI (βig-h3, keratoepithelin) gene found in Japanese corneal dystrophies.  Cornea 2000;19842- 845PubMedGoogle Scholar
57.
Hirano  KNakamura  MYamamoto  NHotta  Y Geographical feature of lattice corneal dystrophy patients in Aichi Prefecture: an analysis of the TGFBI gene [in Japanese].  Nippon Ganka Gakkai Zasshi 2002;106352- 359PubMedGoogle Scholar
58.
Endo  SNguyen  THFujiki  K  et al.  Leu518Pro mutation of the βig-h3 gene causes lattice corneal dystrophy type I.  Am J Ophthalmol 1999;128104- 106PubMedGoogle Scholar
59.
Hirano  KHotta  YFujiki  KKanai  A Corneal amyloidosis caused by Leu518Pro mutation of βig-h3 gene.  Br J Ophthalmol 2000;84583- 585PubMedGoogle Scholar
60.
Fujiki  KHotta  YNakayasu  K  et al.  A new L527R mutation of the βig-h3 gene in patients with lattice corneal dystrophy with deep stromal opacities.  Hum Genet 1998;103286- 289PubMedGoogle Scholar
61.
Funayama  TMashima  YKawashima  MYamada  M Lattice corneal dystrophy type III in patients with a homozygous L527R mutation in the TGFBI gene.  Jpn J Ophthalmol 2006;5062- 64PubMedGoogle Scholar
62.
Kawashima  MYamada  MFunayama  TMashima  Y Six cases of late-onset lattice corneal dystrophy associated with gene mutations induced by the transforming growth factor-beta [in Japanese].  Nippon Ganka Gakkai Zasshi 2005;10993- 100PubMedGoogle Scholar
63.
Nakagawa  ESakimoto  TInada  N  et al.  Histopathological study of lattice corneal dystrophy with L527R mutation of transforming growth factor-β induced gene [in Japanese].  Nippon Ganka Gakkai Zasshi 2004;108118- 123PubMedGoogle Scholar
64.
Yamada  NChikama  TIMorishige  N  et al.  Homozygous mutation (L527R) of TGFBI in an individual with lattice corneal dystrophy.  Br J Ophthalmol 2005;89771- 773PubMedGoogle Scholar
65.
Chakravarthi  SVKannabiran  CSridhar  MSVemuganti  GK TGFBI gene mutations causing lattice and granular corneal dystrophies in Indian patients.  Invest Ophthalmol Vis Sci 2005;46121- 125PubMedGoogle Scholar
66.
Rozzo  CFossarello  MGalleri  G  et al.  A common beta ig-h3 gene mutation (delta f540) in a large cohort of Sardinian Reis Bucklers corneal dystrophy patients: mutations in brief No.180: online.  Hum Mutat 1998;12215- 216PubMedGoogle Scholar
67.
Stix  BLeber  MBingemer  P  et al.  Hereditary lattice corneal dystrophy is associated with corneal amyloid deposits enclosing C-terminal fragments of keratoepithelin.  Invest Ophthalmol Vis Sci 2005;461133- 1139PubMedGoogle Scholar
68.
Nakagawa Asahina  SFujiki  KEnomoto  YMurakami  AKanai  A Case of late onset and isolated lattice corneal dystrophy with Asn544Ser (N544S) mutation of transforming growth factor β–induced (TGFBI,BIGH3) gene [in Japanese].  Nippon Ganka Gakkai Zasshi 2004;108618- 620PubMedGoogle Scholar
69.
Solari  HPVentura  MPPerez  ABSallum  JMBurnier  MNBelfort  R TGFBI gene mutations in Brazilian patients with corneal dystrophy.  Eye 2006;[published online ahead of print January 27, 2006]June 13, 2006doi:10.1038/sj.eye.6702264.Google Scholar
70.
Dighiero  PDrunat  SEllies  P  et al.  A new mutation (A546T) of the βig-h3 gene responsible for a French lattice corneal dystrophy type IIIA.  Am J Ophthalmol 2000;129248- 251PubMedGoogle Scholar
71.
Eifrig  DE  JrAfshari  NABuchanan  HWTBowling  BLKlintworth  GK Polymorphic corneal amyloidosis: a disorder due to a novel mutation in the transforming growth factor β–induced (BIGH3) gene.  Ophthalmology 2004;1111108- 1114PubMedGoogle Scholar
72.
Warren  JFAbbott  RLYoon  MKCrawford  JBSpencer  WHMargolis  TP A new mutation (Leu569Arg) within exon 13 of the TGFBI (BIGH3) gene causes lattice corneal dystrophy type I.  Am J Ophthalmol 2003;136872- 878PubMedGoogle Scholar
73.
Afshari  NAMullally  JEAfshari  MA  et al.  Survey of patients with granular, lattice, avellino, and Reis-Bucklers corneal dystrophies for mutations in the BIGH3 and gelsolin genes.  Arch Ophthalmol 2001;11916- 22PubMedGoogle Scholar
74.
Afshari  NBahadur  RPKlintworth  GK Discovery of novel homozygous mutation in the TGFBI (BIGH3) gene (V624M)in a patient with unilateral lattice corneal dystrophy.  Invest Ophthalmol Vis Sci 2004;45E-abstract 1517Google Scholar
75.
Chau  HMHa  NTCung  LX  et al.  H626R and R124C mutations of the TGFBI (BIGH3)gene caused lattice corneal dystrophy in Vietnamese people.  Br J Ophthalmol 2003;87686- 689PubMedGoogle Scholar
76.
Schmitt-Bernard  CFGuittard  CArnaud  B  et al.  BIGH3 exon 14 mutations lead to intermediate type I/IIIA of lattice corneal dystrophies.  Invest Ophthalmol Vis Sci 2000;411302- 1308PubMedGoogle Scholar
77.
Akama  TONishida  KNakayama  J  et al.  Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene.  Nat Genet 2000;26237- 241PubMedGoogle Scholar
78.
Akama  TONakayama  JNishida  K  et al.  Human corneal GlcNac 6-O-sulfotransferase and mouse intestinal GlcNac 6-O-sulfotransferase both produce keratan sulfate.  J Biol Chem 2001;27616271- 16278PubMedGoogle Scholar
79.
Abbruzzese  CKuhn  UMolina  FRama  PDe Luca  M Novel mutations in the CHST6 gene causing macular corneal dystrophy.  Clin Genet 2004;65120- 125PubMedGoogle Scholar
80.
Aldave  AJYellore  VSThonar  EJ  et al.  Novel mutations in the carbohydrate sulfotransferase gene (CHST6) in American patients with macular corneal dystrophy.  Am J Ophthalmol 2004;137465- 473PubMedGoogle Scholar
81.
El-Ashry  MFAbd El-Aziz  MMShalaby  O  et al.  Novel CHST6 nonsense and missense mutations responsible for macular corneal dystrophy.  Am J Ophthalmol 2005;139192- 193PubMedGoogle Scholar
82.
El-Ashry  MFEl-Aziz  MMWilkins  S  et al.  Identification of novel mutations in the carbohydrate sulfotransferase gene (CHST6) causing macular corneal dystrophy.  Invest Ophthalmol Vis Sci 2002;43377- 382PubMedGoogle Scholar
83.
Ha  NTChau  HMCung le  X  et al.  Identification of novel mutations of the CHST6 gene in Vietnamese families affected with macular corneal dystrophy in two generations.  Cornea 2003;22508- 511PubMedGoogle Scholar
84.
Ha  NTChau  HMCung le  X  et al.  Mutation analysis of the carbohydrate sulfotransferase gene in Vietnamese with macular corneal dystrophy.  Invest Ophthalmol Vis Sci 2003;443310- 3316PubMedGoogle Scholar
85.
Iida-Hasegawa  NFuruhata  AHayatsu  H  et al.  Mutations in the CHST6 gene in patients with macular corneal dystrophy:immunohistochemical evidence of heterogeneity.  Invest Ophthalmol Vis Sci 2003;443272- 3277PubMedGoogle Scholar
86.
Liu  NPBao  WSmith  CFVance  JMKlintworth  GK Different mutations in carbohydrate sulfotransferase 6 (CHST6) gene cause macular corneal dystrophy types I and II in a single sibship.  Am J Ophthalmol 2005;1391118- 1120PubMedGoogle Scholar
87.
Liu  NPDew-Knight  SRayner  M  et al.  Mutations in corneal carbohydrate sulfotransferase 6 gene (CHST6) cause macular corneal dystrophy in Iceland.  Mol Vis 2000;6261- 264PubMedGoogle Scholar
88.
Niel  FEllies  PDighiero  P  et al.  Truncating mutations in the carbohydrate sulfotransferase 6 gene (CHST6) result in macular corneal dystrophy.  Invest Ophthalmol Vis Sci 2003;442949- 2953PubMedGoogle Scholar
89.
Sultana  ASridhar  MSJagannathan  ABalasubramanian  DKannabiran  CKlintworth  GK Novel mutations of the carbohydrate sulfotransferase-6 (CHST6) gene causing macular corneal dystrophy in India.  Mol Vis 2003;9730- 734PubMedGoogle Scholar
90.
Sultana  ASridhar  MSKlintworth  GKBalasubramanian  DKannabiran  C Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy.  Clin Genet 2005;68454- 460PubMedGoogle Scholar
91.
Warren  JFAldave  AJSrinivasan  M  et al.  Novel mutations in the CHST6 gene associated with macular corneal dystrophy in southern India.  Arch Ophthalmol 2003;1211608- 1612PubMedGoogle Scholar
92.
Wilbaut  FVan Went  JM Een zeldzame erfelijke Hoornvliesaandoening.  Ned Tijdschr Geneeskd 1924;12996- 2997Google Scholar
93.
Schnyder  WF Scheibenförmige Kristalleinlagerungen in der Hornhautmitte als Erbleiden.  Klin Monatsbl Augenheilkd 1939;103494- 502Google Scholar
94.
Schnyder  WF Mitteilung über einen neuen Typus von familiärer Hornhauterkrankung.  Schweiz Med Wochenschr 1929;59559- 571Google Scholar
95.
Battisti  CDotti  MTMalandrini  APezzella  FBardelli  AMFederico  A Schnyder corneal crystalline dystrophy: description of a new family with evidence of abnormal lipid storage in skin fibroblasts.  Am J Med Genet 1998;7535- 39PubMedGoogle Scholar
96.
Shearman  AMHudson  TJAndresen  JM  et al.  The gene for Schnyder's crystalline corneal dystrophy maps to human chromosome 1p34.1-p36.  Hum Mol Genet 1996;51667- 1672PubMedGoogle Scholar
97.
Aldave  AJRayner  SAPrincipe  AHAffeldt  JAKatsev  DYellore  VS Analysis of fifteen positional candidate genes for Schnyder crystalline corneal dystrophy.  Mol Vis 2005;11713- 716PubMedGoogle Scholar
98.
Li  STiab  LJiao  X  et al.  Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy.  Am J Hum Genet 2005;7754- 63PubMedGoogle Scholar
99.
Sbrissa  DIkonomov  OCShisheva  A PIKfyve lipid kinase is a protein kinase: downregulation of 5′-phosphoinositide product formation by autophosphorylation.  Biochemistry 2000;3915980- 15989PubMedGoogle Scholar
100.
Frueh  BEBohnke  M In vivo confocal microscopy of fleck dystrophy.  Cornea 1999;18658- 660PubMedGoogle Scholar
101.
Holopainen  JMMoilanen  JATervo  TM In vivo confocal microscopy of Fleck dystrophy and pre-Descemet's membrane corneal dystrophy.  Cornea 2003;22160- 163PubMedGoogle Scholar
102.
Purcell  JJ  JrKrachmer  JHWeingeist  TA Fleck corneal dystrophy.  Arch Ophthalmol 1977;95440- 444PubMedGoogle Scholar
103.
Nicholson  DHGreen  WRCross  HEKenyon  KRMassof  D A clinical and histopathological study of Francois-Neetens speckled corneal dystrophy.  Am J Ophthalmol 1977;83554- 560PubMedGoogle Scholar
104.
Turpin  RTisserand  MSerane  J Opacites corneennes hereditaires et congenitales reparties sur trois generations et atteignant deux jumelles monozygotes.  Arch Ophthalmol (Paris) 1939;3109- 111Google Scholar
105.
Bredrup  CKnappskog  PMMajewski  JRodahl  EBoman  H Congenital stromal dystrophy of the cornea caused by a mutation in the decorin gene.  Invest Ophthalmol Vis Sci 2005;46420- 426PubMedGoogle Scholar
106.
Van Ginderdeuren  RDe Vos  RCasteels  IFoets  B Report of a new family with dominant congenital heredity stromal dystrophy of the cornea.  Cornea 2002;21118- 120PubMedGoogle Scholar
107.
Witschel  HFine  BSGrutzner  PMcTigue  JW Congenital hereditary stromal dystrophy of the cornea.  Arch Ophthalmol 1978;961043- 1051PubMedGoogle Scholar
108.
Biswas  SMunier  FLYardley  J  et al.  Missense mutations in COL8A2, the gene encoding the α2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy.  Hum Mol Genet 2001;102415- 2423PubMedGoogle Scholar
109.
Muragaki  YJacenko  OApte  SMattei  MGNinomiya  YOlsen  BR The alpha 2 (VIII) collagen gene: a novel member of the short chain collagen family located on the human chromosome 1.  J Biol Chem 1991;2667721- 7727PubMedGoogle Scholar
110.
Kapoor  RSakai  LYFunk  SRoux  EBornstein  PSage  EH Type VIII collagen has a restricted distribution in specialized extracellular matrices.  J Cell Biol 1988;107721- 730PubMedGoogle Scholar
111.
Gottsch  JDSundin  OHLiu  SH  et al.  Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of Fuchs corneal dystrophy.  Invest Ophthalmol Vis Sci 2005;461934- 1939PubMedGoogle Scholar
112.
Kobayashi  AFujiki  KMurakami  A  et al.  Analysis of COL8A2 gene mutation in Japanese patients with Fuchs' endothelial dystrophy and posterior polymorphous dystrophy.  Jpn J Ophthalmol 2004;48195- 198PubMedGoogle Scholar
113.
Aldave  AJRayner  SASalem  AK  et al.  No pathogenic mutations identified in the COL8A1 and COL8A2 genes in familial Fuchs corneal dystrophy.  Invest Ophthalmol Vis Sci 2006;473787- 3790PubMedGoogle Scholar
114.
Sundin  OHJun  ASBroman  KW  et al.  Linkage of late-onset Fuchs corneal dystrophy to a novel locus at 13pTel-13q12.13.  Invest Ophthalmol Vis Sci 2006;47140- 145PubMedGoogle Scholar
115.
Sundin  OHBroman  KWChang  HHStark  WJVito  ECGottsch  JD A common locus for late-onset Fuchs corneal dystrophy maps to 18q21.2-q21.32.  Invest Ophthalmol Vis Sci 2006;473919- 3926PubMedGoogle Scholar
116.
Kanis  ABAl-Rajhi  AATaylor  CM  et al.  Exclusion of AR-CHED from the chromosome 20 region containing the PPMD and AD-CHED loci.  Ophthalmic Genet 1999;20243- 249PubMedGoogle Scholar
117.
Hand  CKHarmon  DLKennedy  SMFitzSimon  JSCollum  LMParfrey  NA Localization of the gene for autosomal recessive congenital hereditary endothelial dystrophy (CHED2) to chromosome 20 by homozygosity mapping.  Genomics 1999;611- 4PubMedGoogle Scholar
118.
Callaghan  MHand  CKKennedy  SMFitzSimon  JSCollum  LMParfrey  NA Homozygosity mapping and linkage analysis demonstrate that autosomal recessive congenital hereditary endothelial dystrophy (CHED) and autosomal dominant CHED are genetically distinct.  Br J Ophthalmol 1999;83115- 119PubMedGoogle Scholar
119.
Toma  NMEbenezer  NDInglehearn  CFPlant  CFicker  LABhattacharya  SS Linkage of congenital hereditary endothelial dystrophy to chromosome 20.  Hum Mol Genet 1995;42395- 2398PubMedGoogle Scholar
120.
Vithana  ENMorgan  PSundaresan  P  et al.  Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2).  Nat Genet 2006;38755- 757PubMedGoogle Scholar
121.
Heon  EMathers  WDAlward  WL  et al.  Linkage of posterior polymorphous corneal dystrophy to 20q11.  Hum Mol Genet 1995;4485- 488PubMedGoogle Scholar
122.
Heon  EGreenberg  AKopp  KK  et al.  VSX1: a gene for posterior polymorphous dystrophy and keratoconus.  Hum Mol Genet 2002;111029- 1036PubMedGoogle Scholar
123.
Semina  EVMintz-Hittner  HAMurray  JC Isolation and characterization of a novel human paired-like homeodomain-containing transcription factor gene, VSX1, expressed in ocular tissues.  Genomics 2000;63289- 293PubMedGoogle Scholar
124.
Gwilliam  RLiskova  PFilipec  M  et al.  Posterior polymorphous corneal dystrophy in Czech families maps to chromosome 20 and excludes the VSX1 gene.  Invest Ophthalmol Vis Sci 2005;464480- 4484PubMedGoogle Scholar
125.
Aldave  AJYellore  VSPrincipe  AH  et al.  Candidate gene screening for posterior polymorphous dystrophy.  Cornea 2005;24151- 155PubMedGoogle Scholar
126.
Bisceglia  LCiaschetti  MDe Bonis  P  et al.  VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation.  Invest Ophthalmol Vis Sci 2005;4639- 45PubMedGoogle Scholar
127.
Yellore  VSRayner  SAEmmert-Buck  L  et al.  No pathogenic mutations identified in the COL8A2 gene or four positional candidate genes in patients with posterior polymorphous corneal dystrophy.  Invest Ophthalmol Vis Sci 2005;461599- 1603PubMedGoogle Scholar
128.
Boruchoff  SAKuwabara  T Electron microscopy of posterior polymorphous degeneration.  Am J Ophthalmol 1971;72879- 887PubMedGoogle Scholar
129.
Henriquez  ASKenyon  KRDohlman  CH  et al.  Morphologic characteristics of posterior polymorphous dystrophy: a study of nine corneas and review of the literature.  Surv Ophthalmol 1984;29139- 147PubMedGoogle Scholar
130.
Frisch  SM E1a induces the expression of epithelial characteristics.  J Cell Biol 1994;1271085- 1096PubMedGoogle Scholar
131.
Grooteclaes  MLFrisch  SM Evidence for a function of CtBP in epithelial gene regulation and anoikis.  Oncogene 2000;193823- 3828PubMedGoogle Scholar
132.
Schmid  ELisch  WPhilipp  W  et al.  A new, X-linked endothelial corneal dystrophy.  Am J Ophthalmol 2006;141478- 487PubMedGoogle Scholar
133.
Aldave  AJLin  DYPrincipe  AHYellore  VSWeissman  BA Anterior basement membrane corneal dystrophy and pseudo-unilateral lattice corneal dystrophy in a patient with recurrent corneal erosions.  Am J Ophthalmol 2004;1371124- 1127PubMedGoogle Scholar
134.
Aldave  AJPrincipe  AHLin  DYYellore  VSSmall  KW Lattice dystrophy-like localized amyloidosis of the cornea secondary to trichiasis.  Cornea 2005;24112- 115PubMedGoogle Scholar
135.
Ameye  LYoung  MF Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy,and corneal diseases.  Glycobiology 2002;12107R- 116RPubMedGoogle Scholar
136.
Hopfer  UFukai  NHopfer  H  et al.  Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye.  FASEB J 2005;191232- 1244PubMedGoogle Scholar
137.
Ohtoshi  AWang  SWMaeda  H  et al.  Regulation of retinal cone bipolar cell differentiation and photopic vision by the CVC homeobox gene Vsx1 Curr Biol 2004;14530- 536PubMedGoogle Scholar
138.
Schorderet  DFMenasche  MMorand  S  et al.  Genomic characterization and embryonic expression of the mouse Bigh3(Tgfbi) gene.  Biochem Biophys Res Commun 2000;274267- 274PubMedGoogle Scholar
139.
Kanai  A The pathogenesis and treatment of corneal disorders [in Japanese].  Nippon Ganka Gakkai Zasshi 2002;106757- 777PubMedGoogle Scholar
Special Article
Feburary 2007

Elucidating the Molecular Genetic Basis of the Corneal Dystrophies: Are We There Yet?

Author Affiliations

Author Affiliation: Cornea Service, Jules Stein Eye Institute, University of California–Los Angeles.

Arch Ophthalmol. 2007;125(2):177-186. doi:10.1001/archopht.125.2.177
Abstract

  The identification of the genetic basis of approximately half of the corneal dystrophies in the past decade has resulted in significant advances in our understanding of the genetic control of corneal clarity and has provided clinicians with a definitive means to confirm or refute presumptive clinical diagnoses. This article serves as a guide to understanding the genetic basis of the corneal dystrophies and provides a revised anatomically based classification system that is intended for the clinician, who must possess a working knowledge of the molecular genetic basis of the corneal dystrophies to accurately diagnose,counsel, and manage the disease in affected patients.

Significant advances have been made in the past decade in our understanding of the genetic basis of inherited ocular disorders. The genetic basis of approximately half of the corneal dystrophies has been identified (Table 1), and a chromosomal locus has been described for several others. Dystrophies once thought to be distinct entities based on characteristic clinical and histopathologic features are now known to share a common genetic basis and in some cases are even associated with mutations involving the same codon (Table 2). The clinician is now able to use molecular genetic analysis to confirm or refute presumptive clinical diagnoses in cases of suspected dystrophic corneal disorders.1,2

However, with the ability to definitively diagnose various corneal dystrophies has come a realization that many previous assumptions about the corneal dystrophies are no longer valid. For example, although a dominantly inherited corneal dystrophy would have been considered an unlikely diagnosis in the affected offspring of unaffected parents, mutation screening has confirmed the diagnosis of a highly penetrant, dominantly inherited dystrophy in cases of spontaneous pathogenic mutations.3 In addition, the accepted means of differentiating between the corneal dystrophies on the basis of characteristic clinical features has been challenged by the observance of significant interfamilial and even intrafamilial phenotypic variability among affected individuals sharing a common mutation.4-6 Even the definition of a corneal dystrophy has been challenged in this new era of molecular genetics, as we are now able to confirm the diagnosis of a corneal dystrophy in cases associated with an atypical phenotype, such as unilateral dystrophies,7-11 dystrophies that involve more than a single layer of the cornea,5,12 and dystrophies that are associated with extraocular involvement.12-14 Identification of the genetic basis of the corneal dystrophies and characterization of the expressed protein product have led to insights such as the fact that the transforming growth factor β–induced protein (TGFBI) dystrophies, which involve the Bowman layer and stroma, may actually be of an epithelial genesis.15-17 This, as well as the characterization of several dystrophies that involve multiple layers of the cornea,5,12 highlights the limitations of the current method of classifying the corneal dystrophies by anatomic level of involvement. Thus, although we know much more about the molecular genetic basis of the corneal dystrophies than we did a decade ago,we are now confronted with even more questions about the role of the genetic background and environmental influences in determining the phenotypic expression of the corneal dystrophies, how to categorize and differentiate between the corneal dystrophies, and even how to define a corneal dystrophy. This article will serve as a guide to the current understanding of the molecular genetic basis of the corneal dystrophies, will provide a revised framework for classifying the corneal dystrophies, and will provide information regarding how molecular genetic analysis can be incorporated into everyday clinical practice to enhance the clinician's ability to differentiate between dystrophic and nondystrophic corneal disorders.

Despite the limitations of an anatomically based classification system for the corneal dystrophies, it remains the most useful means of categorizing the corneal dystrophies for the clinician. Given the ease of examining the cornea, in terms of its forming the anterior ocular surface and being a transparent tissue, the clinician is typically able to determine the precise morphological nature and location of the dystrophic deposits. The pattern of dystrophic deposition and the level of anatomic involvement typically determine the affected individual's associated symptoms. Dystrophies of the corneal epithelium and the Bowman layer are commonly associated with recurrent epithelial erosions and decreased visual acuity secondary to epithelial irregularity and scarring of the Bowman layer; stromal dystrophies produce decreased visual acuity by the deposition of various substances in the keratocytes or the extracellular matrix, in a localized manner or in association with systemic accumulation;and the dystrophies of the Descemet membrane and corneal endothelium impair visual acuity by interfering with the endothelial pump function, leading to corneal edema. Although exceptions exist to these generalizations, they illustrate the utility of an anatomically based classification system for the corneal dystrophies. Even when molecular genetic characterization of each of the corneal dystrophies is complete, the primary means of classifying the corneal dystrophies will likely be clinical, although such a classification will certainly incorporate histopathologic and molecular genetic features of the dystrophies. Thus, the classification system that appears herein, in the text and in tabular form (Table 1), presents the corneal dystrophies in a way that we hope will be useful to the clinician, who must possess knowledge of the molecular genetic basis of the corneal dystrophies to accurately diagnose,counsel, and manage the disease in affected patients.

Dystrophies of the epithelium and the bowman layer
Epithelial Dystrophies
Epithelial Basement Membrane Dystrophy

Although several large pedigrees have been described in which patients affected with recurrent corneal erosions demonstrated characteristic clinical features of the dominantly inherited disorder of epithelial basement membrane dystrophy (EBMD; Mendelian Inheritance in Man [MIM] No. 121820), this condition has not been associated with a particular chromosomal locus because linkage analysis has not been performed in these or in other families. Difficulties in identifying the genetic basis of EBMD have arisen from difficulties encountered in defining the affected phenotype because affected patients may be asymptomatic,the often subtle epithelial changes are evanescent in nature, and the estimated phenocopy rate (ie, the number of other disorders of the corneal epithelium and the Bowman layer that may be associated with similar clinical features)is relatively high. However, the identification of the genetic basis of EBMD would be of interest to vision science researchers and refractive surgeons alike because the presence of subclinical EBMD is often associated with the development of a corneal epithelial defect during laser in situ keratomileusis,resulting in an increased risk of developing a number of different complications.Although screening of all individuals undergoing laser in situ keratomileusis,the most commonly performed surgical procedure in the United States, may not be practical, certainly, screening of family members of affected individuals who are interested in the procedure may be of benefit.

Meesmann Corneal Dystrophy

Meesmann corneal dystrophy (MIM No. 122100) is a dominantly inherited disorder of the corneal epithelium associated with the development of myriad epithelial microcysts in the first decade of life. Patients may remain asymptomatic for years, until epithelial erosions associated with rupture of the microcysts produce symptoms such as impaired visual acuity, pain, and photophobia. Meesmann corneal dystrophy is associated with mutations in the genes encoding 2 cornea-specific keratins, K3 (KRT3) and K12 (KRT12).18-27 With a single exception, all causative mutations reported to date have been missense substitutions in the highly conserved helix initiation motif found in exon 1 of KRT12 or in the helix termination motifs found in exon 7 of KRT3 and exon 6 of KRT1218-27 (Table 3).

Band-Shaped, Whorled Microcystic Corneal Dystrophy

Band-shaped, whorled microcystic corneal dystrophy (Lisch dystrophy)is unusual in that it is 1 of only 3 corneal dystrophies to have been linked to the X chromosome.28 Linkage analysis performed in a single affected family excluded linkage to the KRT3 and KRT12 loci and mapped the disease gene to the short arm of the X chromosome (Xp22.3).28 Affected patients demonstrate bilateral gray intraepithelial opacifications in band-shaped,spokelike, and whorled configurations that appear as epithelial microcysts on retroillumination. Affected patients may experience reduced visual acuity when the central cornea is involved, but recurrent epithelial erosions have not been reported.28-32

Bowman Layer Dystrophies

Reis33 published a report in 1917 of a dominantly inherited condition associated with recurrent corneal erosions and superficial corneal scarring occurring in the first 2 decades of life.More than 30 years later, Bücklers34 described a similar condition, found in members of the same family described by Reis.33 The clinical characteristics of what has become known as Reis-Bücklers dystrophy are similar to those of another dystrophy of the Bowman layer that was described by Thiel and Behnke35 in 1967. This has unfortunately led to confusion in the literature, which prompted Küchle et al36 to propose that classification be based not only on the clinical manifestations but also on the distinctive electron microscopic features of each. Küchle et al36 have proposed the terms corneal dystrophy of the Bowman layer type I (CDB I) (MIM No. 608470)for what had been previously known as Reis-Bücklers dystrophy or a superficial variant of granular dystrophy, and corneal dystrophy of the Bowman layer type II (CDB II) (MIM No. 602082) for what had been previously known as Thiel-Behnke or honeycomb-shaped dystrophy. As will be discussed in more detail in the section on the stromal dystrophies, the dominantly inherited CDB I and CDB II are associated with the Arg124Leu and Arg555Gln mutations, respectively,in the TGFBI gene.37 Screening of TGFBI in patients with Bowman layer dystrophies has demonstrated that most of the reported cases of CDB I are actually descriptions of CDB II, which appears to be much more common than CDB I.36 Although most of the individuals reported as having a Bowman layer dystrophy in whom TGFBI screening has been performed demonstrate one of the aforementioned mutations, a similar phenotype has been reported with other TGFBI mutations. In addition, 2 cases have been reported of individuals with CDB I in whom the classic Arg124Leu mutation was identified,but whose parents were unaffected.3 Because confirmatory maternity and paternity testing was performed in each case, these represent the first reports of spontaneous pathogenic mutations in TGFBI. These cases also highlight the clinical utility of molecular genetic analysis in confirming the diagnosis of a suspected corneal dystrophy,which was questioned, given the absence of a family history in each case.

A second genetic locus on chromosome 10 (10q23-q24) has been reported for the Bowman layer dystrophies, although linkage has been demonstrated in only 1 family to date.38-40

Dystrophies of the corneal stroma
TGFBI Dystrophies

The demonstration of linkage of lattice (LCD1) (MIM No. 122200), granular (GCD) (MIM No. 121900), and combined granular-lattice (CGLCD) (MIM No. 607541)corneal dystrophies to chromosome 5q31 by Stone and colleagues41 in 1994, followed 3 years later by the demonstration of pathogenic mutations in TGFBI in each of these dystrophies and in CDB I,42 ushered in a new era of understanding of the relationship between the various corneal dystrophies. Because each of the TGFBI dystrophies is most commonly associated with a mutation in 1of only 2 codons in TGFBI (Table 2), screening of these 2 codons will detect most of the pathogenic mutations in TGFBI. However, a large number of TGFBI mutations have been subsequently described in patients with a variety of phenotypes, most commonly as variants of LCD (Table 4).

Rather than create a new type of LCD, GCD, and CGLCD with the discovery of each novel mutation, it is simple and useful to classify the TGFBI dystrophies as classic and variant. Using this classification system, CDB, LCD, GCD, and CGLCD are diagnosed as they have been traditionally, ie, based on the clinical and histologic features. Molecular genetic analysis would be used to determine whether the dystrophy was classic, that is, associated with the most commonly identified mutations given in Table 2,or variant, that is, associated with 1 of the less commonly encountered mutations given in Table 4 or a novel mutation.Even with the aggregation of all of the variant forms of GCD, LCD, and CGLCD into a single category, most of the patients with a TGFBI dystrophy will still demonstrate one of the classic mutations.

Macular Corneal Dystrophy

In 2000, Akama and colleagues77 reported the identification of mutations in a newly recognized carbohydrate sulfotransferase gene (CHST6) on chromosome 16 (16q22) in patients with macular corneal dystrophy (MCD; MIM No. 217800). Corneal N-acetylglucosamine-6-sulfotransferase, the product of the CHST6 gene, has been demonstrated to catalyze the sulfation of N-acetylglucosamine in keratan sulfate, and identified mutations have been shown to result in a loss of enzymatic activity.78 This loss of activity in turn is thought to result in the formation of unsulfated keratan sulfate, leading to a loss of transparency in the corneas of affected patients. Akama and colleagues,77 as well as our group and others,79-91 have described coding region mutations in CHST6 in patients with type I MCD (differentiation between types I and IA was not performed),as well as deletions and rearrangements 5′ of CHST6 in patients with type II MCD. Although more than 100 mutations have been reported in CHST6 in individuals from a number of different ethnic groups, including patients with types I and II MCD, no association between the type and location of the mutation and the clinical features has been observed.77,79-91 This is in contrast to the TGFBI dystrophies, in which such a phenotype-genotype correlation is observed, and indicates that diagnostic mutation screening necessitates screening the entire CHST6 coding region because no mutation hot spots such as those noted in TGFBI, have been observed.

Central Crystalline Dystrophy of Schnyder

Wilbaut and Van Went92 published a description of the dominantly inherited central crystalline dystrophy of Schnyder (SCCD)(MIM No. 121800) in 1924 that today bears the name of the man who further described its characteristic clinical features in 2 studies published in 1929and 1939.93,94 An important distinguishing feature of SCCD is that it is associated with a number of nonocular manifestations,the most important of which is hypercholesterolemia, found in approximately 40% of affected patients.14 Cultured fibroblasts obtained from skin biopsy specimens demonstrate evidence of abnormal intracellular cholesterol metabolism, providing evidence of a generalized metabolic disorder and a means of confirming the diagnosis.95

Ten years ago, Shearman and colleagues96 mapped the genetic locus for SCCD in 2 large Swedish-Finnish families to the short arm of chromosome 1 (originally reported to be 1p34.1-1p36, but revised to 1p36.2-1p36.3). After performing fine mapping in these and an additional 11families, the authors refined the candidate interval to a 2.32-megabase region that contains 30 genes, including 24 genes with a known gene function (http://www.ncbi.nlm.nih.gov; build 36.1). However, our laboratory has recently completed screening the coding region of each of these positional candidate genes in 2 families with SCCD and has not identified a presumed pathogenic coding region mutation.97 The possibility remains that the genetic basis of SCCD in the families that we screened links to another chromosomal region (ie, locus heterogeneity exists for SCCD), that pathogenic mutations are present in the promoter region or the 5′ or 3′ untranslated region of one of the positional candidate genes, or that an unidentified gene within the candidate interval is involved.

Fleck Corneal Dystrophy

The genetic basis of rare, dominantly inherited, visually insignificant Fleck corneal dystrophy (MIM No. 121850) was recently elucidated with the identification of pathogenic mutations in the PIP5K3 gene in affected individuals from 8 families.98 This gene is a member of the phosphoinositide 3–kinase family and is involved in generating and relaying phosphorylation signals that regulate the formation and localization of intracellular lipid products.98,99 Fleck corneal dystrophy is characterized by discrete gray-white stromal flecks,representing keratocytes containing excess glycosaminoglycan and lipids100-103 and is not associated with any systemic disorders involving mucopolysaccharide or lipid deposition.

Congenital Hereditary Stromal Dystrophy

Congenital hereditary stromal dystrophy (MIM No. 610048), an uncommon cause of congenital corneal opacification, has been reported in only 4 families in the English-language ophthalmic literature since it was first described in 1939.104-107 In 2005, Bredrup and colleagues105 reported a mutation in the decorin gene in a newly described pedigree with congenital hereditary stromal dystrophy. Those authors hypothesized that the identified frameshift mutation in the decorin gene results in premature truncation of the protein product, a dermatan sulfate proteoglycan. This in turn results in abnormal binding of the mutant protein to collagen, disrupting collagen fibril spacing and thereby resulting in loss of corneal clarity.105

Dystrophies of the descemet membrane and endothelium
Fuchs Endothelial Corneal Dystrophy

In 2001, Biswas and colleagues108 reported the results of a genome-wide linkage analysis in a large family with early-onset Fuchs endothelial corneal dystrophy (FECD) (MIM No. 136800), demonstrating linkage to a 6- to 7-centimorgan region on chromosome 1p34.3-1p32. The gene that encodes the α2 chain of type VIII collagen, COL8A2, was previously mapped to this region109 and was selected for screening because it is highly expressed in the Descemet membrane.110 A missense mutation, Gln455Lys,was identified that segregated with the disease in the family.108 Gottsch and colleagues111 have also identified a missense mutation, Leu450Trp, in another family with early-onset FECD, indicating that mutations in COL8A2 are associated with an early-onset variant of FECD.

Although 3 other presumed pathogenic COL8A2 sequence variants were identified by Biswas and colleagues108 in families with classic late-onset FECD, the identification of 2 of these variants in unaffected control individuals112,113 and the identification of the third variant in only a single sporadic case of FECD of more than 200 unrelated affected individuals screened indicates that it is likely a rare polymorphism.108,112,113 Thus,insufficient evidence exists to implicate COL8A2 mutations in the pathogenesis of classic FECD.

Several genome-wide linkage studies performed recently in families with the classic late-onset form of FECD have demonstrated evidence of linkage to a number of different chromosomal regions. Sundin and colleagues114 have demonstrated linkage to a 26.4-megabase region on chromosome 13 (13pTel-13q12.13) in a large kindred with FECD, although screening of the positional candidate genes has not identified any presumed pathogenic mutations. Recently, Sundin and colleagues115 reported linkage of 3 unrelated families with FECD to a 6.9-megabase region on chromosome 18 (18q21.2-18q21.32), although no pathogenic mutations have been identified in the positional candidate genes screened to date. Thus, it appears that locus heterogeneity may exist for FECD, in which mutations in several genes on different chromosomes may produce a common disease phenotype.

A National Institutes of Health–sponsored multicenter study to identify the genetic basis of classic FECD, organized in 2005 by investigators at Case Western Reserve University, Cleveland, Ohio, is currently recruiting affected families with the goal of enrolling 500 families from the 24 study sites. Given the delayed onset of the affected phenotype in FECD, single families with classic FECD typically do not have a sufficient number of individuals in multiple generations to successfully perform genome-wide association studies.Therefore, this multicenter study is recruiting hundreds of affected sibling pairs for use in performing genome-wide linkage analysis, which may replicate linkage to a previously identified locus for FECD or demonstrate linkage to other chromosomal loci.

Congenital Hereditary Endothelial Dystrophies

Congenital hereditary endothelial dystrophy (CHED) (MIM No. 121700)is a rare, dominantly inherited cause of congenital corneal opacification.Autosomal dominant (CHED1) and autosomal recessive (CHED2) forms of CHED have been described, differing in the time of onset and characteristic clinical features. Both forms have been mapped to genetically distinct loci on chromosome 20, with CHED1 having been mapped to a region that lies within the region linked to posterior polymorphous dystrophy,116-119 features of which are noted with increased frequency in relatives of patients with the dominant form of CHED. Recently, Vithana and colleagues120 have reported that mutations in the SLC4A11 gene, a member of the SLC4 family of bicarbonate transporter proteins, are associated with CHED2; missense and nonsense mutations in this gene segregated with the disease phenotype in 8 affected pedigrees.

Posterior Polymorphous Corneal Dystrophy

Although mutations in the visual system homeobox gene 1 (VSX1) (MIM No. 605020), COL8A2, and the gene for transcription factor 8 (TCF8) have been reported to play a role in the pathogenesis of posterior polymorphous corneal dystrophy (PPCD) (MIM No. 122000), convincing evidence exists to support the role of only TCF8 mutations in this autosomal dominant corneal endothelial dystrophy. In 1995, Heon and colleagues121 reported the results of a genome-wide linkage analysis in a large family with PPCD,demonstrating evidence of linkage to the long arm of chromosome 20 (20q11).The VSX1 gene was mapped to the PPCD candidate interval in 2000 and was selected for screening by Heon and colleagues122 2years later as a positional and functional candidate gene for PPCD because it is a homeodomain-containing transcription factor gene that regulates the expression of cellular differentiation during development in various tissues,including the eye.123 Although 2 presumed pathogenic mutations were identified (Asp144Glu and Gly160Asp), our laboratory's identification of the Asp144Glu missense change in an unaffected control subject and the identification of the Gly160Asp variant in individuals without PPCD and in only 1 of 49 affected probands in whom VSX1 screening has been reported have led to doubts about a potential role of VSX1 in the pathogenesis of PPCD.13,122,124-126

After the identification of COL8A2 mutations in families with FECD, Biswas and colleagues108 screened COL8A2 in 15 patients with PPCD, assuming that the 2 endothelial dystrophies might share a common genetic basis. Although a presumed pathogenic mutation was identified in 2 related individuals, our laboratory and others have not identified this previously reported mutation or any novel presumed pathogenic mutations in COL8A2 in a large number of individuals affected with PPCD, raising questions regarding the role of COL8A2 in PPCD.13,112,127

Krafchak and colleagues13 have recently reported frameshift and nonsense mutations in TCF8 in 5 of 11 families with PPCD. Each mutation was demonstrated to segregate with the affected phenotype in each family examined with the exception of 2 unaffected individuals from 1 large family. This exception was attributed by the authors to incomplete penetrance. Our laboratory has also identified presumed pathogenic frameshift and nonsense mutations in TCF8 in 25%of the affected probands screened; each TCF8 mutation identified by Krafchak et al13 and our laboratory has been identified in only a single family. Although the mechanism by which TCF8 mutations result in the ocular and histopathologic findings associated with PPCD (characterized by abnormal epithelial cell–like corneal endothelial cells128,129)has not been clearly elucidated, TCF8 has been demonstrated to be involved in the repression of the epithelial cell phenotype.130,131

X-Linked Endothelial Corneal Dystrophy

The most recently described corneal dystrophy, X-linked endothelial corneal dystrophy (XECD), has been identified in a single large Austrian pedigree in which an X-linked inheritance pattern is suggested by the transmission of the dystrophy from affected fathers to all of their daughters but to none of their sons.132 However, the corneal endothelial changes, described as resembling moon craters, were observed in both male and female patients. Corneal opacification, in the form of congenital corneal edema and subepithelial band keratopathy, was identified only in male patients,however.132 To identify the genetic basis of XECD, the authors performed linkage analysis of the X chromosome and demonstrated evidence of linkage to a 4.73-centimorgan region on Xq25. Because this candidate gene region contains less than 100 known and predicted genes, the authors are in the process of prioritizing and screening the positional candidate genes.132

Clinical relevance

Identification of the genetic basis of many of the corneal dystrophies has led to the identification and characterization of many of the encoded proteins responsible for maintaining corneal transparency and thus has opened many new avenues of investigation for vision scientists. Clinicians have also benefited from the ability to definitively differentiate between dystrophic and nondystrophic causes of corneal opacification1,2,5,133,134 and will continue to use molecular diagnostic testing with increasing frequency in their practices as the genetic basis of more of the corneal dystrophies is elucidated and efficient screening methods for the most common pathogenic mutations continue to be refined. Diagnostic laboratories such as The John and Marcia Carver Nonprofit Genetic Testing Laboratory at the University of Iowa, Iowa City (http://www.carverlab.org) already offer clinicians the ability to screen for mutations in genes associated with a variety of inherited ocular disorders, including the TGBFI dystrophies. As mentioned previously, the TGBFI gene is ideally suited for mutation screening because most of the pathogenic mutations occur at 1 of 2 mutation hot spots (Table 2). Commercially available buccal swabs and saliva specimen containers that greatly simplify the collection, packaging, and shipping of DNA specimens for analysis also have eliminated nearly all of the practical constraints that a clinician might encounter in relying on peripheral blood specimens as a source of DNA for genetic analysis.1,2

Beyond providing the clinician with a definitive diagnostic tool, elucidation of the molecular genetic basis of the corneal dystrophies also has led to the ability to develop animal models of corneal disorders,135-138 the next step in developing and testing novel treatment strategies for the corneal dystrophies.139

Correspondence: Anthony J. Aldave, MD, Jules Stein Eye Institute, 100 Stein Plaza, University of California–Los Angeles,Los Angeles, CA 90095 (aldave@jsei.ucla.edu).

Submitted for Publication: June 13, 2006; final revision received August 26, 2006; accepted August 28, 2006.

Financial Disclosure: None reported.

References
1.
Aldave  AJYellore  VSSelf  CAHolsclaw  DSmall  K The usefulness of buccal swabs for mutation screening in patients with suspected corneal dystrophies.  Ophthalmology 2004;1111407- 1409PubMedGoogle Scholar
2.
Aldave  AJ The clinical utility of genetic analysis in the diagnosis and management of inherited corneal disorders.  Contemp Ophthalmol 2005;41- 10Google Scholar
3.
Tanhehco  TYEifrig  DE  JrSchwab  IRRapuano  CJKlintworth  GK Two cases of Reis-Bucklers corneal dystrophy (granular corneal dystrophy type III) caused by spontaneous mutations in the TGFBI gene.  Arch Ophthalmol 2006;124589- 593PubMedGoogle Scholar
4.
Aldave  AJGutmark  JGYellore  VS  et al.  Lattice corneal dystrophy associated with the Ala546Asp and Pro551Gln missense changes in the TGFBI gene.  Am J Ophthalmol 2004;138772- 781PubMedGoogle Scholar
5.
Aldave  AJRayner  SAKing  JAAffeldt  JAYellore  VS A unique corneal dystrophy of Bowman's layer and stroma associated with the Gly623Asp mutation in the transforming growth factor beta–induced (TGFBI) gene.  Ophthalmology 2005;1121017- 1022PubMedGoogle Scholar
6.
Klintworth  GKBao  WAfshari  NA Two mutations in the TGFBI (BIGH3) gene associated with lattice corneal dystrophy in an extensively studied family.  Invest Ophthalmol Vis Sci 2004;451382- 1388PubMedGoogle Scholar
7.
Aldave  AJRayner  SAKim  BTPrechanond  AYellore  VS Unilateral lattice corneal dystrophy associated with the novel His572del mutation in the TGFBI gene.  Mol Vis 2006;12142- 146PubMedGoogle Scholar
8.
Hirano  KHotta  YNakamura  MFujiki  KKanai  AYamamoto  N Late-onset form of lattice corneal dystrophy caused by leu527Arg mutation of the TGFBI gene.  Cornea 2001;20525- 529PubMedGoogle Scholar
9.
Sridhar  MSLaibson  PREagle  RC  JrRapuano  CJCohen  EJ Unilateral corneal lattice dystrophy.  Cornea 2001;20850- 852PubMedGoogle Scholar
10.
Sridhar  MSPandrowala  HRao  GN Unilateral lattice dystrophy in an elderly patient.  Eye 2002;16653- 655PubMedGoogle Scholar
11.
Stewart  HBlack  GCDonnai  D  et al.  A mutation within exon 14 of the TGFBI (BIGH3) gene on chromosome 5q31causes an asymmetric, late-onset form of lattice corneal dystrophy.  Ophthalmology 1999;106964- 970PubMedGoogle Scholar
12.
Klintworth  GKVogel  FS Macular corneal dystrophy: an inherited acid mucopolysaccharide storage disease of the corneal fibroblast.  Am J Pathol 1964;45565- 586PubMedGoogle Scholar
13.
Krafchak  CMPawar  HMoroi  SE  et al.  Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells.  Am J Hum Genet 2005;77694- 708PubMedGoogle Scholar
14.
Bron  AJWilliams  HPCarruthers  ME Hereditary crystalline stromal dystrophy of Schnyder, I: clinical features of a family with hyperlipoproteinaemia.  Br J Ophthalmol 1972;56383- 399PubMedGoogle Scholar
15.
Ridgway  AEAkhtar  SMunier  FL  et al.  Ultrastructural and molecular analysis of Bowman's layer corneal dystrophies:an epithelial origin?  Invest Ophthalmol Vis Sci 2000;413286- 3292PubMedGoogle Scholar
16.
Akhtar  SMeek  KMRidgway  AEBonshek  REBron  AJ Deposits and proteoglycan changes in primary and recurrent granular dystrophy of the cornea.  Arch Ophthalmol 1999;117310- 321PubMedGoogle Scholar
17.
Johnson  BLBrown  SIZaidman  GW A light and electron microscopic study of recurrent granular dystrophy of the cornea.  Am J Ophthalmol 1981;9249- 58PubMedGoogle Scholar
18.
Coleman  CMHannush  SCovello  SPSmith  FJUitto  JMcLean  WH A novel mutation in the helix termination motif of keratin K12 in a US family with Meesmann corneal dystrophy.  Am J Ophthalmol 1999;128687- 691PubMedGoogle Scholar
19.
Corden  LDSwensson  OSwensson  B  et al.  A novel keratin 12 mutation in a German kindred with Meesmann's corneal dystrophy.  Br J Ophthalmol 2000;84527- 530PubMedGoogle Scholar
20.
Corden  LDSwensson  OSwensson  B  et al.  Molecular genetics of Meesmann's corneal dystrophy: ancestral and novel mutations in keratin 12 (K12) and complete sequence of the human KRT12 gene.  Exp Eye Res 2000;7041- 49PubMedGoogle Scholar
21.
Irvine  ADColeman  CMMoore  JE  et al.  A novel mutation in KRT12 associated with Meesmann's epithelial corneal dystrophy.  Br J Ophthalmol 2002;86729- 732PubMedGoogle Scholar
22.
Irvine  ADCorden  LDSwensson  O  et al.  Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy.  Nat Genet 1997;16184- 187PubMedGoogle Scholar
23.
Nishida  KHonma  YDota  A  et al.  Isolation and chromosomal localization of a cornea-specific human keratin 12 gene and detection of four mutations in Meesmann corneal epithelial dystrophy.  Am J Hum Genet 1997;611268- 1275PubMedGoogle Scholar
24.
Takahashi  KMurakami  AOkisaka  SKimura  TKanai  A Heterozygous Ala137Pro mutation in keratin 12 gene found in Japanese with Meesmann's corneal dystrophy.  Jpn J Ophthalmol 2002;46673- 674PubMedGoogle Scholar
25.
Nichini  OManzi  VMunier  FLSchorderet  DF Meesmann corneal dystrophy (MECD): report of 2 families and a novel mutation in the cornea specific keratin 12 (KRT12)gene.  Ophthalmic Genet 2005;26169- 173PubMedGoogle Scholar
26.
Chen  YTTseng  SHChao  SC Novel mutations in the helix termination motif of keratin 3 and keratin 12 in 2 Taiwanese families with Meesmann corneal dystrophy.  Cornea 2005;24928- 932PubMedGoogle Scholar
27.
Yoon  MKWarren  JFHolsclaw  DSGritz  DCMargolis  TP A novel arginine substitution mutation in 1A domain and a novel 27bp insertion mutation in 2B domain of keratin 12 gene associated with Meesmann's corneal dystrophy.  Br J Ophthalmol 2004;88752- 756PubMedGoogle Scholar
28.
Lisch  WButtner  AOeffner  F  et al.  Lisch corneal dystrophy is genetically distinct from Meesmann corneal dystrophy and maps to xp22.3.  Am J Ophthalmol 2000;130461- 468PubMedGoogle Scholar
29.
Lisch  WSteuhl  KPLisch  C  et al.  A new, band-shaped and whorled microcystic dystrophy of the corneal epithelium.  Am J Ophthalmol 1992;11435- 44PubMedGoogle Scholar
30.
Alvarez-Fischer  Mde Toledo  JABarraquer  RI Lisch corneal dystrophy.  Cornea 2005;24494- 495PubMedGoogle Scholar
31.
Charles  NCYoung  JAKumar  A  et al.  Band-shaped and whorled microcystic dystrophy of the corneal epithelium.  Ophthalmology 2000;1071761- 1764PubMedGoogle Scholar
32.
Robin  SBEpstein  RJKornmehl  EW Band-shaped, whorled microcystic corneal dystrophy.  Am J Ophthalmol 1994;117543- 544PubMedGoogle Scholar
33.
Reis  W Familiare, fleckige Hornhautentartung.  Dtsch Med Wochenschr 1917;43575Google Scholar
34.
Bücklers  M Uber eine weitere familiare Hornhaut dystrophie (Reis).  Klin Monatsbl Augenheilkd 1949;114386- 397Google Scholar
35.
Thiel  HJBehnke  H Eine bisher unbekannte, subepitheliale hereditare Hornhaut-dystrophie.  Klin Monatsbl Augenheilkd 1967;150862- 874PubMedGoogle Scholar
36.
Küchle  MGreen  WRVolcker  HEBarraquer  J Reevaluation of corneal dystrophies of Bowman's layer and the anterior stroma (Reis-Bucklers and Thiel-Behnke types): a light and electron microscopic study of eight corneas and a review of the literature.  Cornea 1995;14333- 354PubMedGoogle Scholar
37.
Okada  MYamamoto  STsujikawa  M  et al.  Two distinct kerato-epithelin mutations in Reis-Bucklers corneal dystrophy.  Am J Ophthalmol 1998;126535- 542PubMedGoogle Scholar
38.
Sorour  HMYee  SBPeterson  NJ  et al.  Recurrence of chromosome 10 Thiel-Behnke corneal dystrophy (CDB2) after excimer laser phototherapeutic keratectomy or penetrating keratoplasty.  Cornea 2005;2445- 50PubMedGoogle Scholar
39.
Sullivan  LSZhao  XBowne  SJ  et al.  Exclusion of the human collagen type XVII (COL17A1) gene as the cause of Thiel-Behnke corneal dystrophy (CDB2) on chromosome 10q23-q25.  Curr Eye Res 2003;27223- 226PubMedGoogle Scholar
40.
Yee  RWSullivan  LSLai  HT  et al.  Linkage mapping of Thiel-Behnke corneal dystrophy (CDB2) to chromosome 10q23-q24.  Genomics 1997;46152- 154PubMedGoogle Scholar
41.
Stone  EMMathers  WDRosenwasser  GO  et al.  Three autosomal dominant corneal dystrophies map to chromosome 5q.  Nat Genet 1994;647- 51PubMedGoogle Scholar
42.
Munier  FLKorvatska  EDjemai  A  et al.  Kerato-epithelin mutations in four 5q31-linked corneal dystrophies.  Nat Genet 1997;15247- 251PubMedGoogle Scholar
43.
Ha  NTCung le  XChau  HM  et al.  A novel mutation of the TGFBI gene found in a Vietnamese family with atypical granular corneal dystrophy.  Jpn J Ophthalmol 2003;47246- 248PubMedGoogle Scholar
44.
Cung le  XHa  NTChau  HM  et al.  Mutation analysis of the TGFBI gene in Vietnamese with granular and Avellino corneal dystrophy.  Jpn J Ophthalmol 2004;4812- 16PubMedGoogle Scholar
45.
Munier  FLFrueh  BEOthenin-Girard  P  et al.  BIGH3 mutation spectrum in corneal dystrophies.  Invest Ophthalmol Vis Sci 2002;43949- 954PubMedGoogle Scholar
46.
Stewart  HSRidgway  AEDixon  MJBonshek  RParveen  RBlack  G Heterogeneity in granular corneal dystrophy: identification of three causative mutations in the TGFBI (BIGH3) gene: lessons for corneal amyloidogenesis.  Hum Mutat 1999;14126- 132PubMedGoogle Scholar
47.
Dighiero  PNiel  FEllies  P  et al.  Histologic phenotype-genotype correlation of corneal dystrophies associated with eight distinct mutations in the TGFBI gene.  Ophthalmology 2001;108818- 823PubMedGoogle Scholar
48.
Dighiero  PDrunat  SD’Hermies  FRenard  GDelpech  MValleix  S A novel variant of granular corneal dystrophy caused by association of 2 mutations in the TGFBI gene—R124L and ΔT125-ΔE126.  Arch Ophthalmol 2000;118814- 818PubMedGoogle Scholar
49.
Fujiki  KNakayasu  KKanai  A Corneal dystrophies in Japan.  J Hum Genet 2001;46431- 435PubMedGoogle Scholar
50.
Mashima  YYamamoto  SInoue  Y  et al.  Association of autosomal dominantly inherited corneal dystrophies with BIGH3 gene mutations in Japan.  Am J Ophthalmol 2000;130516- 517PubMedGoogle Scholar
51.
Ha  NTFujiki  KHotta  YNakayasu  KKanai  A Q118X mutation of M1S1 gene caused gelatinous drop-like corneal dystrophy: the P501T of BIGH3 gene found in a family with gelatinous drop-like corneal dystrophy.  Am J Ophthalmol 2000;130119- 120PubMedGoogle Scholar
52.
Kawasaki  SNishida  KQuantock  AJDota  ABennett  KKinoshita  S Amyloid and Pro501 Thr-mutated βig-h3 gene product colocalize in lattice corneal dystrophy type IIIA.  Am J Ophthalmol 1999;127456- 458PubMedGoogle Scholar
53.
Tsujikawa  KTsujikawa  MYamamoto  SFujikado  TTano  Y Allelic homogeneity due to a founder mutation in Japanese patients with lattice corneal dystrophy type IIIA.  Am J Med Genet 2002;11320- 22PubMedGoogle Scholar
54.
Yamamoto  SOkada  MTsujikawa  M  et al.  A kerato-epithelin (βig-h3) mutation in lattice corneal dystrophy type IIIA.  Am J Hum Genet 1998;62719- 722PubMedGoogle Scholar
55.
Tian  XFujiki  KWang  W  et al.  Novel mutation (V505D) of the TGFBI gene found in a Chinese family with lattice corneal dystrophy, type I.  Jpn J Ophthalmol 2005;4984- 88PubMedGoogle Scholar
56.
Fujiki  KHotta  YNakayasu  K  et al.  Six different mutations of TGFBI (βig-h3, keratoepithelin) gene found in Japanese corneal dystrophies.  Cornea 2000;19842- 845PubMedGoogle Scholar
57.
Hirano  KNakamura  MYamamoto  NHotta  Y Geographical feature of lattice corneal dystrophy patients in Aichi Prefecture: an analysis of the TGFBI gene [in Japanese].  Nippon Ganka Gakkai Zasshi 2002;106352- 359PubMedGoogle Scholar
58.
Endo  SNguyen  THFujiki  K  et al.  Leu518Pro mutation of the βig-h3 gene causes lattice corneal dystrophy type I.  Am J Ophthalmol 1999;128104- 106PubMedGoogle Scholar
59.
Hirano  KHotta  YFujiki  KKanai  A Corneal amyloidosis caused by Leu518Pro mutation of βig-h3 gene.  Br J Ophthalmol 2000;84583- 585PubMedGoogle Scholar
60.
Fujiki  KHotta  YNakayasu  K  et al.  A new L527R mutation of the βig-h3 gene in patients with lattice corneal dystrophy with deep stromal opacities.  Hum Genet 1998;103286- 289PubMedGoogle Scholar
61.
Funayama  TMashima  YKawashima  MYamada  M Lattice corneal dystrophy type III in patients with a homozygous L527R mutation in the TGFBI gene.  Jpn J Ophthalmol 2006;5062- 64PubMedGoogle Scholar
62.
Kawashima  MYamada  MFunayama  TMashima  Y Six cases of late-onset lattice corneal dystrophy associated with gene mutations induced by the transforming growth factor-beta [in Japanese].  Nippon Ganka Gakkai Zasshi 2005;10993- 100PubMedGoogle Scholar
63.
Nakagawa  ESakimoto  TInada  N  et al.  Histopathological study of lattice corneal dystrophy with L527R mutation of transforming growth factor-β induced gene [in Japanese].  Nippon Ganka Gakkai Zasshi 2004;108118- 123PubMedGoogle Scholar
64.
Yamada  NChikama  TIMorishige  N  et al.  Homozygous mutation (L527R) of TGFBI in an individual with lattice corneal dystrophy.  Br J Ophthalmol 2005;89771- 773PubMedGoogle Scholar
65.
Chakravarthi  SVKannabiran  CSridhar  MSVemuganti  GK TGFBI gene mutations causing lattice and granular corneal dystrophies in Indian patients.  Invest Ophthalmol Vis Sci 2005;46121- 125PubMedGoogle Scholar
66.
Rozzo  CFossarello  MGalleri  G  et al.  A common beta ig-h3 gene mutation (delta f540) in a large cohort of Sardinian Reis Bucklers corneal dystrophy patients: mutations in brief No.180: online.  Hum Mutat 1998;12215- 216PubMedGoogle Scholar
67.
Stix  BLeber  MBingemer  P  et al.  Hereditary lattice corneal dystrophy is associated with corneal amyloid deposits enclosing C-terminal fragments of keratoepithelin.  Invest Ophthalmol Vis Sci 2005;461133- 1139PubMedGoogle Scholar
68.
Nakagawa Asahina  SFujiki  KEnomoto  YMurakami  AKanai  A Case of late onset and isolated lattice corneal dystrophy with Asn544Ser (N544S) mutation of transforming growth factor β–induced (TGFBI,BIGH3) gene [in Japanese].  Nippon Ganka Gakkai Zasshi 2004;108618- 620PubMedGoogle Scholar
69.
Solari  HPVentura  MPPerez  ABSallum  JMBurnier  MNBelfort  R TGFBI gene mutations in Brazilian patients with corneal dystrophy.  Eye 2006;[published online ahead of print January 27, 2006]June 13, 2006doi:10.1038/sj.eye.6702264.Google Scholar
70.
Dighiero  PDrunat  SEllies  P  et al.  A new mutation (A546T) of the βig-h3 gene responsible for a French lattice corneal dystrophy type IIIA.  Am J Ophthalmol 2000;129248- 251PubMedGoogle Scholar
71.
Eifrig  DE  JrAfshari  NABuchanan  HWTBowling  BLKlintworth  GK Polymorphic corneal amyloidosis: a disorder due to a novel mutation in the transforming growth factor β–induced (BIGH3) gene.  Ophthalmology 2004;1111108- 1114PubMedGoogle Scholar
72.
Warren  JFAbbott  RLYoon  MKCrawford  JBSpencer  WHMargolis  TP A new mutation (Leu569Arg) within exon 13 of the TGFBI (BIGH3) gene causes lattice corneal dystrophy type I.  Am J Ophthalmol 2003;136872- 878PubMedGoogle Scholar
73.
Afshari  NAMullally  JEAfshari  MA  et al.  Survey of patients with granular, lattice, avellino, and Reis-Bucklers corneal dystrophies for mutations in the BIGH3 and gelsolin genes.  Arch Ophthalmol 2001;11916- 22PubMedGoogle Scholar
74.
Afshari  NBahadur  RPKlintworth  GK Discovery of novel homozygous mutation in the TGFBI (BIGH3) gene (V624M)in a patient with unilateral lattice corneal dystrophy.  Invest Ophthalmol Vis Sci 2004;45E-abstract 1517Google Scholar
75.
Chau  HMHa  NTCung  LX  et al.  H626R and R124C mutations of the TGFBI (BIGH3)gene caused lattice corneal dystrophy in Vietnamese people.  Br J Ophthalmol 2003;87686- 689PubMedGoogle Scholar
76.
Schmitt-Bernard  CFGuittard  CArnaud  B  et al.  BIGH3 exon 14 mutations lead to intermediate type I/IIIA of lattice corneal dystrophies.  Invest Ophthalmol Vis Sci 2000;411302- 1308PubMedGoogle Scholar
77.
Akama  TONishida  KNakayama  J  et al.  Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene.  Nat Genet 2000;26237- 241PubMedGoogle Scholar
78.
Akama  TONakayama  JNishida  K  et al.  Human corneal GlcNac 6-O-sulfotransferase and mouse intestinal GlcNac 6-O-sulfotransferase both produce keratan sulfate.  J Biol Chem 2001;27616271- 16278PubMedGoogle Scholar
79.
Abbruzzese  CKuhn  UMolina  FRama  PDe Luca  M Novel mutations in the CHST6 gene causing macular corneal dystrophy.  Clin Genet 2004;65120- 125PubMedGoogle Scholar
80.
Aldave  AJYellore  VSThonar  EJ  et al.  Novel mutations in the carbohydrate sulfotransferase gene (CHST6) in American patients with macular corneal dystrophy.  Am J Ophthalmol 2004;137465- 473PubMedGoogle Scholar
81.
El-Ashry  MFAbd El-Aziz  MMShalaby  O  et al.  Novel CHST6 nonsense and missense mutations responsible for macular corneal dystrophy.  Am J Ophthalmol 2005;139192- 193PubMedGoogle Scholar
82.
El-Ashry  MFEl-Aziz  MMWilkins  S  et al.  Identification of novel mutations in the carbohydrate sulfotransferase gene (CHST6) causing macular corneal dystrophy.  Invest Ophthalmol Vis Sci 2002;43377- 382PubMedGoogle Scholar
83.
Ha  NTChau  HMCung le  X  et al.  Identification of novel mutations of the CHST6 gene in Vietnamese families affected with macular corneal dystrophy in two generations.  Cornea 2003;22508- 511PubMedGoogle Scholar
84.
Ha  NTChau  HMCung le  X  et al.  Mutation analysis of the carbohydrate sulfotransferase gene in Vietnamese with macular corneal dystrophy.  Invest Ophthalmol Vis Sci 2003;443310- 3316PubMedGoogle Scholar
85.
Iida-Hasegawa  NFuruhata  AHayatsu  H  et al.  Mutations in the CHST6 gene in patients with macular corneal dystrophy:immunohistochemical evidence of heterogeneity.  Invest Ophthalmol Vis Sci 2003;443272- 3277PubMedGoogle Scholar
86.
Liu  NPBao  WSmith  CFVance  JMKlintworth  GK Different mutations in carbohydrate sulfotransferase 6 (CHST6) gene cause macular corneal dystrophy types I and II in a single sibship.  Am J Ophthalmol 2005;1391118- 1120PubMedGoogle Scholar
87.
Liu  NPDew-Knight  SRayner  M  et al.  Mutations in corneal carbohydrate sulfotransferase 6 gene (CHST6) cause macular corneal dystrophy in Iceland.  Mol Vis 2000;6261- 264PubMedGoogle Scholar
88.
Niel  FEllies  PDighiero  P  et al.  Truncating mutations in the carbohydrate sulfotransferase 6 gene (CHST6) result in macular corneal dystrophy.  Invest Ophthalmol Vis Sci 2003;442949- 2953PubMedGoogle Scholar
89.
Sultana  ASridhar  MSJagannathan  ABalasubramanian  DKannabiran  CKlintworth  GK Novel mutations of the carbohydrate sulfotransferase-6 (CHST6) gene causing macular corneal dystrophy in India.  Mol Vis 2003;9730- 734PubMedGoogle Scholar
90.
Sultana  ASridhar  MSKlintworth  GKBalasubramanian  DKannabiran  C Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy.  Clin Genet 2005;68454- 460PubMedGoogle Scholar
91.
Warren  JFAldave  AJSrinivasan  M  et al.  Novel mutations in the CHST6 gene associated with macular corneal dystrophy in southern India.  Arch Ophthalmol 2003;1211608- 1612PubMedGoogle Scholar
92.
Wilbaut  FVan Went  JM Een zeldzame erfelijke Hoornvliesaandoening.  Ned Tijdschr Geneeskd 1924;12996- 2997Google Scholar
93.
Schnyder  WF Scheibenförmige Kristalleinlagerungen in der Hornhautmitte als Erbleiden.  Klin Monatsbl Augenheilkd 1939;103494- 502Google Scholar
94.
Schnyder  WF Mitteilung über einen neuen Typus von familiärer Hornhauterkrankung.  Schweiz Med Wochenschr 1929;59559- 571Google Scholar
95.
Battisti  CDotti  MTMalandrini  APezzella  FBardelli  AMFederico  A Schnyder corneal crystalline dystrophy: description of a new family with evidence of abnormal lipid storage in skin fibroblasts.  Am J Med Genet 1998;7535- 39PubMedGoogle Scholar
96.
Shearman  AMHudson  TJAndresen  JM  et al.  The gene for Schnyder's crystalline corneal dystrophy maps to human chromosome 1p34.1-p36.  Hum Mol Genet 1996;51667- 1672PubMedGoogle Scholar
97.
Aldave  AJRayner  SAPrincipe  AHAffeldt  JAKatsev  DYellore  VS Analysis of fifteen positional candidate genes for Schnyder crystalline corneal dystrophy.  Mol Vis 2005;11713- 716PubMedGoogle Scholar
98.
Li  STiab  LJiao  X  et al.  Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy.  Am J Hum Genet 2005;7754- 63PubMedGoogle Scholar
99.
Sbrissa  DIkonomov  OCShisheva  A PIKfyve lipid kinase is a protein kinase: downregulation of 5′-phosphoinositide product formation by autophosphorylation.  Biochemistry 2000;3915980- 15989PubMedGoogle Scholar
100.
Frueh  BEBohnke  M In vivo confocal microscopy of fleck dystrophy.  Cornea 1999;18658- 660PubMedGoogle Scholar
101.
Holopainen  JMMoilanen  JATervo  TM In vivo confocal microscopy of Fleck dystrophy and pre-Descemet's membrane corneal dystrophy.  Cornea 2003;22160- 163PubMedGoogle Scholar
102.
Purcell  JJ  JrKrachmer  JHWeingeist  TA Fleck corneal dystrophy.  Arch Ophthalmol 1977;95440- 444PubMedGoogle Scholar
103.
Nicholson  DHGreen  WRCross  HEKenyon  KRMassof  D A clinical and histopathological study of Francois-Neetens speckled corneal dystrophy.  Am J Ophthalmol 1977;83554- 560PubMedGoogle Scholar
104.
Turpin  RTisserand  MSerane  J Opacites corneennes hereditaires et congenitales reparties sur trois generations et atteignant deux jumelles monozygotes.  Arch Ophthalmol (Paris) 1939;3109- 111Google Scholar
105.
Bredrup  CKnappskog  PMMajewski  JRodahl  EBoman  H Congenital stromal dystrophy of the cornea caused by a mutation in the decorin gene.  Invest Ophthalmol Vis Sci 2005;46420- 426PubMedGoogle Scholar
106.
Van Ginderdeuren  RDe Vos  RCasteels  IFoets  B Report of a new family with dominant congenital heredity stromal dystrophy of the cornea.  Cornea 2002;21118- 120PubMedGoogle Scholar
107.
Witschel  HFine  BSGrutzner  PMcTigue  JW Congenital hereditary stromal dystrophy of the cornea.  Arch Ophthalmol 1978;961043- 1051PubMedGoogle Scholar
108.
Biswas  SMunier  FLYardley  J  et al.  Missense mutations in COL8A2, the gene encoding the α2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy.  Hum Mol Genet 2001;102415- 2423PubMedGoogle Scholar
109.
Muragaki  YJacenko  OApte  SMattei  MGNinomiya  YOlsen  BR The alpha 2 (VIII) collagen gene: a novel member of the short chain collagen family located on the human chromosome 1.  J Biol Chem 1991;2667721- 7727PubMedGoogle Scholar
110.
Kapoor  RSakai  LYFunk  SRoux  EBornstein  PSage  EH Type VIII collagen has a restricted distribution in specialized extracellular matrices.  J Cell Biol 1988;107721- 730PubMedGoogle Scholar
111.
Gottsch  JDSundin  OHLiu  SH  et al.  Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of Fuchs corneal dystrophy.  Invest Ophthalmol Vis Sci 2005;461934- 1939PubMedGoogle Scholar
112.
Kobayashi  AFujiki  KMurakami  A  et al.  Analysis of COL8A2 gene mutation in Japanese patients with Fuchs' endothelial dystrophy and posterior polymorphous dystrophy.  Jpn J Ophthalmol 2004;48195- 198PubMedGoogle Scholar
113.
Aldave  AJRayner  SASalem  AK  et al.  No pathogenic mutations identified in the COL8A1 and COL8A2 genes in familial Fuchs corneal dystrophy.  Invest Ophthalmol Vis Sci 2006;473787- 3790PubMedGoogle Scholar
114.
Sundin  OHJun  ASBroman  KW  et al.  Linkage of late-onset Fuchs corneal dystrophy to a novel locus at 13pTel-13q12.13.  Invest Ophthalmol Vis Sci 2006;47140- 145PubMedGoogle Scholar
115.
Sundin  OHBroman  KWChang  HHStark  WJVito  ECGottsch  JD A common locus for late-onset Fuchs corneal dystrophy maps to 18q21.2-q21.32.  Invest Ophthalmol Vis Sci 2006;473919- 3926PubMedGoogle Scholar
116.
Kanis  ABAl-Rajhi  AATaylor  CM  et al.  Exclusion of AR-CHED from the chromosome 20 region containing the PPMD and AD-CHED loci.  Ophthalmic Genet 1999;20243- 249PubMedGoogle Scholar
117.
Hand  CKHarmon  DLKennedy  SMFitzSimon  JSCollum  LMParfrey  NA Localization of the gene for autosomal recessive congenital hereditary endothelial dystrophy (CHED2) to chromosome 20 by homozygosity mapping.  Genomics 1999;611- 4PubMedGoogle Scholar
118.
Callaghan  MHand  CKKennedy  SMFitzSimon  JSCollum  LMParfrey  NA Homozygosity mapping and linkage analysis demonstrate that autosomal recessive congenital hereditary endothelial dystrophy (CHED) and autosomal dominant CHED are genetically distinct.  Br J Ophthalmol 1999;83115- 119PubMedGoogle Scholar
119.
Toma  NMEbenezer  NDInglehearn  CFPlant  CFicker  LABhattacharya  SS Linkage of congenital hereditary endothelial dystrophy to chromosome 20.  Hum Mol Genet 1995;42395- 2398PubMedGoogle Scholar
120.
Vithana  ENMorgan  PSundaresan  P  et al.  Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2).  Nat Genet 2006;38755- 757PubMedGoogle Scholar
121.
Heon  EMathers  WDAlward  WL  et al.  Linkage of posterior polymorphous corneal dystrophy to 20q11.  Hum Mol Genet 1995;4485- 488PubMedGoogle Scholar
122.
Heon  EGreenberg  AKopp  KK  et al.  VSX1: a gene for posterior polymorphous dystrophy and keratoconus.  Hum Mol Genet 2002;111029- 1036PubMedGoogle Scholar
123.
Semina  EVMintz-Hittner  HAMurray  JC Isolation and characterization of a novel human paired-like homeodomain-containing transcription factor gene, VSX1, expressed in ocular tissues.  Genomics 2000;63289- 293PubMedGoogle Scholar
124.
Gwilliam  RLiskova  PFilipec  M  et al.  Posterior polymorphous corneal dystrophy in Czech families maps to chromosome 20 and excludes the VSX1 gene.  Invest Ophthalmol Vis Sci 2005;464480- 4484PubMedGoogle Scholar
125.
Aldave  AJYellore  VSPrincipe  AH  et al.  Candidate gene screening for posterior polymorphous dystrophy.  Cornea 2005;24151- 155PubMedGoogle Scholar
126.
Bisceglia  LCiaschetti  MDe Bonis  P  et al.  VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation.  Invest Ophthalmol Vis Sci 2005;4639- 45PubMedGoogle Scholar
127.
Yellore  VSRayner  SAEmmert-Buck  L  et al.  No pathogenic mutations identified in the COL8A2 gene or four positional candidate genes in patients with posterior polymorphous corneal dystrophy.  Invest Ophthalmol Vis Sci 2005;461599- 1603PubMedGoogle Scholar
128.
Boruchoff  SAKuwabara  T Electron microscopy of posterior polymorphous degeneration.  Am J Ophthalmol 1971;72879- 887PubMedGoogle Scholar
129.
Henriquez  ASKenyon  KRDohlman  CH  et al.  Morphologic characteristics of posterior polymorphous dystrophy: a study of nine corneas and review of the literature.  Surv Ophthalmol 1984;29139- 147PubMedGoogle Scholar
130.
Frisch  SM E1a induces the expression of epithelial characteristics.  J Cell Biol 1994;1271085- 1096PubMedGoogle Scholar
131.
Grooteclaes  MLFrisch  SM Evidence for a function of CtBP in epithelial gene regulation and anoikis.  Oncogene 2000;193823- 3828PubMedGoogle Scholar
132.
Schmid  ELisch  WPhilipp  W  et al.  A new, X-linked endothelial corneal dystrophy.  Am J Ophthalmol 2006;141478- 487PubMedGoogle Scholar
133.
Aldave  AJLin  DYPrincipe  AHYellore  VSWeissman  BA Anterior basement membrane corneal dystrophy and pseudo-unilateral lattice corneal dystrophy in a patient with recurrent corneal erosions.  Am J Ophthalmol 2004;1371124- 1127PubMedGoogle Scholar
134.
Aldave  AJPrincipe  AHLin  DYYellore  VSSmall  KW Lattice dystrophy-like localized amyloidosis of the cornea secondary to trichiasis.  Cornea 2005;24112- 115PubMedGoogle Scholar
135.
Ameye  LYoung  MF Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy,and corneal diseases.  Glycobiology 2002;12107R- 116RPubMedGoogle Scholar
136.
Hopfer  UFukai  NHopfer  H  et al.  Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye.  FASEB J 2005;191232- 1244PubMedGoogle Scholar
137.
Ohtoshi  AWang  SWMaeda  H  et al.  Regulation of retinal cone bipolar cell differentiation and photopic vision by the CVC homeobox gene Vsx1 Curr Biol 2004;14530- 536PubMedGoogle Scholar
138.
Schorderet  DFMenasche  MMorand  S  et al.  Genomic characterization and embryonic expression of the mouse Bigh3(Tgfbi) gene.  Biochem Biophys Res Commun 2000;274267- 274PubMedGoogle Scholar
139.
Kanai  A The pathogenesis and treatment of corneal disorders [in Japanese].  Nippon Ganka Gakkai Zasshi 2002;106757- 777PubMedGoogle Scholar
×