[Skip to Content]
[Skip to Content Landing]
Original Investigation
May 2018

Preoperative Facial Nerve Mapping to Plan and Guide Pediatric Facial Vascular Anomaly Resection

Author Affiliations
  • 1Division of Pediatric Otolaryngology, Seattle Children’s Hospital, Seattle, Washington
  • 2Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle
  • 3Neuromonitoring Program, Department of Rehabilitation Medicine, University of Washington, Seattle
JAMA Otolaryngol Head Neck Surg. 2018;144(5):418-426. doi:10.1001/jamaoto.2018.0054
Key Points

Question  Does preoperative facial nerve mapping affect intraoperative facial nerve injury risk and expand safe surgical approach options compared with standard nerve integrity monitoring?

Findings  In this historically controlled study of 92 cervical facial vascular anomalies, the preoperative facial nerve mapping group had significantly fewer long-term facial nerve injuries (1 in 61 patients) compared with the control group (6 in 31 patients), more direct surgical approaches were used, and operative times were reduced in the facial nerve mapping group.

Meaning  Preoperative facial nerve mapping is recommended in the surgical treatment of cervicofacial vascular anomalies.


Importance  Facial vascular anomalies are surgical challenges due to their vascularity and facial nerve distortion. To assist facial vascular anomaly surgical treatment, presurgical percutaneous facial nerve stimulation and recording of compound motor action potentials can be used to map the facial nerve branches. During surgery, the nerve map and continuous intraoperative motor end plate potential monitoring can be used to reduce nerve injury.

Objective  To investigate if preoperative facial nerve mapping (FNM) is associated with intraoperative facial nerve injury risk and safe surgical approach options compared with standard nerve integrity monitoring (NIM).

Design, Setting, and Participants  This investigation was a historically controlled study at a tertiary vascular anomaly center in Seattle, Washington. Participants were 92 pediatric patients with facial vascular anomalies undergoing definitive anomaly surgery (from January 1, 1999, through January 1, 2015), with 2 years’ follow-up. In retrospective review, a consecutive FNM patient cohort after 2005 (FNM group) was compared with a consecutive historical cohort (1999-2005) (NIM group).

Main Outcomes and Measures  Postoperative facial nerve function and selected surgical approach. For NIM and FNM comparisons, statistical analysis calculated odds ratios of nerve injury and operative approach, and time-to-event methods analyzed operative time.

Results  The NIM group had 31 patients (median age, 3.3 years [interquartile range, 2.2-11.4 years]; 20 [65%] male), and the FNM group had 61 patients (median age, 4.4 years [interquartile range, 1.5-11.0 years]; 26 [43%] male). In both groups, lymphatic malformation resection was most common (19 of 31 [61%] in the NIM group and 32 of 61 [52%] in the FNM group), and the median anomaly volumes were similar (52.4 mL; interquartile range, 12.8-183.3 mL in the NIM group and 65.4 mL; interquartile range, 18.8-180.2 mL in the FNM group). Weakness in the facial nerve branches at 2 years after surgery was more common in the NIM group (6 of 31 [19%]) compared with the FNM group (1 of 61 [2%]) (percentage difference, 17%; 95% CI, 3%-32%). Anterograde facial nerve dissection was used more in the NIM group (27 of 31 [87%]) compared with the FNM group (28 of 61 [46%]) (percentage difference, 41%; 95% CI, 24%-58%). Treatment with retrograde dissection without identification of the main trunk of the facial nerve was performed in 21 of 61 (34%) in the FNM group compared with 0 of 31 (0%) in the NIM group. Operative time was significantly shorter in the FNM group, and patients in the FNM group were more likely to complete surgery sooner (adjusted hazard ratio, 5.36; 95% CI, 2.00-14.36).

Conclusions and Relevance  Facial nerve mapping before facial vascular anomaly surgery was associated with less intraoperative facial nerve injury and shorter operative time. Mapping enabled direct identification of individual intralesional and perilesional nerve branches, reducing the need for traditional anterograde facial nerve dissection, and allowed for safe removal of some lesions after partial nerve dissection through transoral or direct excision.