Association Between Cystatin C and 20-Year Cumulative Incidence of Hearing Impairment in the Epidemiology of Hearing Loss Study | Geriatrics | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Cruickshanks  KJ, Tweed  TS, Wiley  TL,  et al.  The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study.  Arch Otolaryngol Head Neck Surg. 2003;129(10):1041-1046.PubMedGoogle ScholarCrossref
2.
Cruickshanks  KJ, Nondahl  DM, Dalton  DS,  et al.  Smoking, central adiposity, and poor glycemic control increase risk of hearing impairment.  J Am Geriatr Soc. 2015;63(5):918-924.PubMedGoogle ScholarCrossref
3.
Sergeyenko  Y, Lall  K, Liberman  MC, Kujawa  SG.  Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline.  J Neurosci. 2013;33(34):13686-13694.PubMedGoogle ScholarCrossref
4.
Jennings  CR, Jones  NS.  Presbyacusis  [review].  J Laryngol Otol. 2001;115(3):171-178.PubMedGoogle ScholarCrossref
5.
Haroun  MK, Jaar  BG, Hoffman  SC, Comstock  GW, Klag  MJ, Coresh  J.  Risk factors for chronic kidney disease: a prospective study of 23,534 men and women in Washington County, Maryland.  J Am Soc Nephrol. 2003;14(11):2934-2941.PubMedGoogle ScholarCrossref
6.
Herrington  WG, Smith  M, Bankhead  C,  et al.  Body-mass index and risk of advanced chronic kidney disease: prospective analyses from a primary care cohort of 1.4 million adults in England.  PLoS One. 2017;12(3):e0173515. doi:10.1371/journal.pone.017351PubMedGoogle ScholarCrossref
7.
Filler  G, Bökenkamp  A, Hofmann  W, Le Bricon  T, Martínez-Brú  C, Grubb  A.  Cystatin C as a marker of GFR—history, indications, and future research.  Clin Biochem. 2005;38(1):1-8.PubMedGoogle ScholarCrossref
8.
Shlipak  MG, Mattes  MD, Peralta  CA.  Update on cystatin C: incorporation into clinical practice.  Am J Kidney Dis. 2013;62(3):595-603.PubMedGoogle ScholarCrossref
9.
Klein  R, Knudtson  MD, Lee  KE, Klein  BEK.  Serum cystatin C level, kidney disease markers, and incidence of age-related macular degeneration: the Beaver Dam Eye Study.  Arch Ophthalmol. 2009;127(2):193-199.PubMedGoogle ScholarCrossref
10.
Yaffe  K, Lindquist  K, Shlipak  MG,  et al; Health ABC Study.  Cystatin C as a marker of cognitive function in elders: findings from the health ABC study.  Ann Neurol. 2008;63(6):798-802.PubMedGoogle ScholarCrossref
11.
Newman  AB, Sanders  JL, Kizer  JR,  et al.  Trajectories of function and biomarkers with age: the CHS All Stars Study.  Int J Epidemiol. 2016;45(4):1135-1145.PubMedGoogle ScholarCrossref
12.
Sarnak  MJ, Katz  R, Fried  LF,  et al; Cardiovascular Health Study.  Cystatin C and aging success.  Arch Intern Med. 2008;168(2):147-153.PubMedGoogle ScholarCrossref
13.
Madero  M, Wassel  CL, Peralta  CA,  et al; Health ABC Study.  Cystatin C associates with arterial stiffness in older adults.  J Am Soc Nephrol. 2009;20(5):1086-1093.PubMedGoogle ScholarCrossref
14.
Shlipak  MG, Katz  R, Sarnak  MJ,  et al.  Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease.  Ann Intern Med. 2006;145(4):237-246.PubMedGoogle ScholarCrossref
15.
Emberson  JR, Haynes  R, Dasgupta  T,  et al.  Cystatin C and risk of vascular and nonvascular mortality: a prospective cohort study of older men.  J Intern Med. 2010;268(2):145-154.PubMedGoogle ScholarCrossref
16.
Turk  V, Stoka  V, Vasiljeva  O,  et al.  Cysteine cathepsins: from structure, function and regulation to new frontiers.  Biochim Biophys Acta. 2012;1824(1):68-88.PubMedGoogle ScholarCrossref
17.
Mathews  PM, Levy  E.  Cystatin C in aging and in Alzheimer’s disease.  Ageing Res Rev. 2016;32:38-50.PubMedGoogle ScholarCrossref
18.
Vilayur  E, Gopinath  B, Harris  DC, Burlutsky  G, McMahon  CM, Mitchell  P.  The association between reduced GFR and hearing loss: a cross-sectional population-based study.  Am J Kidney Dis. 2010;56(4):661-669.PubMedGoogle ScholarCrossref
19.
Hong  JW, Jeon  JH, Ku  CR, Noh  JH, Yoo  HJ, Kim  DJ.  The prevalence and factors associated with hearing impairment in the Korean adults: the 2010-2012 Korea National Health and Nutrition Examination Survey (observational study).  Medicine (Baltimore). 2015;94(10):e611.PubMedGoogle ScholarCrossref
20.
Cruickshanks  KJ, Wiley  TL, Tweed  TS,  et al; Epidemiology of Hearing Loss Study.  Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin.  Am J Epidemiol. 1998;148(9):879-886.PubMedGoogle ScholarCrossref
21.
Cruickshanks  KJ, Nondahl  DM, Tweed  TS,  et al.  Education, occupation, noise exposure history and the 10-yr cumulative incidence of hearing impairment in older adults.  Hear Res. 2010;264(1-2):3-9.PubMedGoogle ScholarCrossref
22.
Klein  R, Klein  BEK, Linton  KLP, De Mets  DL.  The Beaver Dam Eye Study: visual acuity.  Ophthalmology. 1991;98(8):1310-1315.PubMedGoogle ScholarCrossref
23.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.  JAMA. 2013;310(20):2191-2194.PubMedGoogle ScholarCrossref
24.
American Speech-Language-Hearing Association (ASHA).  Guidelines for manual pure-tone threshold audiometry.  ASHA. 1978;20(4):297-301.PubMedGoogle Scholar
25.
American National Standards Institute.  Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms. (ANSI S3.1-1999). New York, NY: ANSI; 1999.
26.
American National Standards Institute.  Specification for Audiometers. (ANSI S3.6-2010). New York, NY: ANSI; 2010.
27.
Borhani  NO, Kass  EH, Langford  HG,  et al.  The hypertension detection and follow-up program: hypertension detection and follow-up program cooperative group.  Prev Med. 1976;5(2):207-215.PubMedGoogle ScholarCrossref
28.
Inker  LA, Schmid  CH, Tighiouart  H,  et al; CKD-EPI Investigators.  Estimating glomerular filtration rate from serum creatinine and cystatin C.  N Engl J Med. 2012;367(1):20-29.PubMedGoogle ScholarCrossref
29.
Levey  AS, Becker  C, Inker  LA.  Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review.  JAMA. 2015;313(8):837-846.PubMedGoogle ScholarCrossref
30.
Fricker  M, Wiesli  P, Brändle  M, Schwegler  B, Schmid  C.  Impact of thyroid dysfunction on serum cystatin C.  Kidney Int. 2003;63(5):1944-1947.PubMedGoogle ScholarCrossref
31.
Shlipak  MG, Matsushita  K, Ärnlöv  J,  et al; CKD Prognosis Consortium.  Cystatin C versus creatinine in determining risk based on kidney function.  N Engl J Med. 2013;369(10):932-943.PubMedGoogle ScholarCrossref
32.
Meyer  TW, Hostetter  TH.  Uremia.  N Engl J Med. 2007;357(13):1316-1325.PubMedGoogle ScholarCrossref
33.
Cuna  V, Battaglino  G, Capelli  I,  et al.  Hypoacusia and chronic renal dysfunction: new etiopathogenetic prospective.  Ther Apher Dial. 2015;19(2):111-118.PubMedGoogle ScholarCrossref
34.
Lang  F, Vallon  V, Knipper  M, Wangemann  P.  Functional significance of channels and transporters expressed in the inner ear and kidney.  Am J Physiol Cell Physiol. 2007;293(4):C1187-C1208.PubMedGoogle ScholarCrossref
35.
Dalton  DS, Cruickshanks  KJ, Klein  R, Klein  BEK, Wiley  TL.  Association of NIDDM and hearing loss.  Diabetes Care. 1998;21(9):1540-1544.PubMedGoogle ScholarCrossref
36.
Nash  SD, Cruickshanks  KJ, Zhan  W,  et al.  Long-term assessment of systemic inflammation and the cumulative incidence of age-related hearing impairment in the epidemiology of hearing loss study.  J Gerontol A Biol Sci Med Sci. 2014;69(2):207-214.PubMedGoogle ScholarCrossref
37.
Gansevoort  RT, Correa-Rotter  R, Hemmelgarn  BR,  et al.  Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention.  Lancet. 2013;382(9889):339-352.PubMedGoogle ScholarCrossref
38.
Matsushita  K, Coresh  J, Sang  Y,  et al; CKD Prognosis Consortium.  Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data.  Lancet Diabetes Endocrinol. 2015;3(7):514-525.PubMedGoogle ScholarCrossref
39.
Shlipak  MG, Katz  R, Kestenbaum  B, Fried  LF, Siscovick  D, Sarnak  MJ.  Clinical and subclinical cardiovascular disease and kidney function decline in the elderly.  Atherosclerosis. 2009;204(1):298-303.PubMedGoogle ScholarCrossref
40.
Fischer  ME, Schubert  CR, Nondahl  DM,  et al.  Subclinical atherosclerosis and increased risk of hearing impairment.  Atherosclerosis. 2015;238(2):344-349.PubMedGoogle ScholarCrossref
41.
Shi  X.  Physiopathology of the cochlear microcirculation.  [Review].  Hear Res. 2011;282(1-2):10-24.PubMedGoogle ScholarCrossref
42.
Odden  MC, Tager  IB, Gansevoort  RT,  et al.  Age and cystatin C in healthy adults: a collaborative study.  Nephrol Dial Transplant. 2010;25(2):463-469.PubMedGoogle ScholarCrossref
43.
Köttgen  A, Selvin  E, Stevens  LA, Levey  AS, Van Lente  F, Coresh  J.  Serum cystatin C in the United States: the Third National Health and Nutrition Examination Survey (NHANES III).  Am J Kidney Dis. 2008;51(3):385-394.PubMedGoogle ScholarCrossref
Original Investigation
June 2018

Association Between Cystatin C and 20-Year Cumulative Incidence of Hearing Impairment in the Epidemiology of Hearing Loss Study

Author Affiliations
  • 1Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison
  • 2Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison
JAMA Otolaryngol Head Neck Surg. 2018;144(6):469-474. doi:10.1001/jamaoto.2018.0041
Key Points

Question  What is the association between cystatin C, both as an independent biomarker and as a marker of kidney function, and the 20-year incidence of hearing impairment in middle-aged and older adults?

Findings  In this longitudinal, population-based study of 863 participants in the Epidemiology of Hearing Loss Study aged 48 to 86 years at baseline, reduced kidney function as estimated using cystatin C, but not cystatin C alone, was associated with an increased risk of developing hearing impairment during 20 years of follow-up.

Meaning  Some age-related hearing impairment may occur in conjunction with or as the result of reduced kidney function.

Abstract

Importance  Hearing impairment (HI) is one of the most common conditions affecting older adults. Identification of factors associated with the development of HI may lead to ways to reduce the incidence of this condition.

Objective  To investigate the association between cystatin C, both as an independent biomarker and as a marker of kidney function, and the 20-year incidence of HI.

Design, Setting, and Participants  Data were obtained from the Epidemiology of Hearing Loss Study (EHLS), a longitudinal, population-based study in Beaver Dam, Wisconsin. Baseline examinations began in 1993 and continued through 1995, and participants were examined approximately every 5 years, with the most recent examination phase completed in 2015. The EHLS participants with serum cystatin C concentration data and without HI at the baseline examination were included in this study.

Main Outcomes and Measures  Participants without HI were followed up for incident HI (pure-tone average of hearing thresholds at 0.5, 1, 2, and 4 kHz >25 dB hearing level in either ear) for 20 years. Cystatin C was analyzed as a biomarker (concentration) and used to determine estimated glomerular filtration rate (eGFRCysC). Discrete-time Cox proportional hazards regression models were used to analyze the association between cystatin C concentration and eGFRCysC and the 20-year cumulative incidence of HI.

Results  There were 863 participants aged 48 to 86 years with cystatin C data and without HI at baseline. Of these, 599 (69.4%) were women. In models adjusted for age and sex, cystatin C was associated with an increased risk of developing HI (hazard ratio [HR], 1.20; 95% CI, 1.07-1.34 per 0.2-mg/L increase in cystatin C concentration), but the estimate was attenuated after further adjusting for educational level, current smoking, waist circumference, and glycated hemoglobin (HR, 1.11; 95% CI, 0.98-1.27 per 0.2-mg/L increase in cystatin C concentration). Low eGFRCysC was significantly associated with the 20-year cumulative incidence of HI in both the age- and sex-adjusted model (HR, 1.70; 95% CI, 1.16-2.48; <60 vs ≥60 mL/min/1.73 m2) and the multivariable-adjusted model (HR, 1.50; 95% CI, 1.02-2.22; <60 vs ≥60 mL/min/1.73 m2).

Conclusions and Relevance  Reduced kidney function as estimated using cystatin C, but not cystatin C alone, was associated with the 20-year cumulative incidence of HI, suggesting that some age-related HI may occur in conjunction with or as the result of reduced kidney function.

×