Inhibition of the Growth of Papillary Thyroid Carcinoma Cells by CI-1040

Ying C. Henderson, MD, PhD; Soon-Hyun Ahn, MD; Gary L. Clayman, DDS, MD

Background: Papillary thyroid carcinoma (PTC), the most common type of thyroid malignancy, usually possesses mutations, either RET/PTC rearrangement or BRAF mutation. Both mutations can activate the mitogen-activated protein kinase kinase/extracellular signal-related kinase signaling transduction pathway, which results in activation of transcription factors that regulate cellular proliferation, differentiation, and apoptosis.

Objective: To test the effects of CI-1040 (PD184352), a specific MEK1/2 inhibitor, on PTC cells carrying either an RET/PTC1 rearrangement or a BRAF mutation.

Design: The effects of CI-1040 on PTC cells were evaluated in vitro and in vivo.

Main Outcome Measures: The effects of CI-1040 on PTC cells were evaluated in vitro using a cell proliferation assay, cell cycle analysis, and immunoblotting. The antitumor effects of CI-1040 in vivo were evaluated in an orthotopic mouse model.

Results: The concentrations of CI-1040 needed to inhibit 50% cell growth were 0.052µM for PTC cells with a BRAF mutation and 1.1µM for PTC cells with the RET/PTC1 rearrangement. After 3 weeks of oral administration of CI-1040 (300 mg/kg/d) to mice with orthotopic tumor implants of PTC cells, the mean tumor volume of implants bearing the RET/PTC1 rearrangement (n=5) was reduced 47.5% compared with untreated mice (from 701.9 to 368.5 mm³), and the mean volume of implants with a BRAF mutation (n=8) was reduced 31.3% (from 297.3 to 204.2 mm³).

Conclusions: CI-1040 inhibits PTC cell growth in vitro and in vivo. Because RET/PTC rearrangements are unique to thyroid carcinomas and a high percentage of PTCs possess either mutation, these findings support the clinical evaluation of CI-1040 for patients with PTC.

BHP2-7 and K2 cells (2 × 10^6) were plated the day before treatment in a 10-cm dish. On the day of treatment, CI-1040 was added to the cells for 24 hours at 37°C. Cells were treated with trypsin and collected, washed once in 0.8% sodium chloride solution, fixed in 5 mL of ethanol, and stored at 4°C overnight. Propidium iodide (50 µg/mL, 1 mL) containing DNase-free RNase (3.3 µg/mL) was added to the fixed cells, which were then incubated at 37°C for 30 minutes. Cell cycles were determined using a flow cytometer (FACSCalibur; BD Biosciences, San Jose, California).

WESTERN BLOT ANALYSIS

Protein extracts from PTC cells were prepared in lysis buffer containing 20mM Tris hydrochloride (pH 7.4), 1% Triton X-100, 300mM sodium chloride, 1mM phenylmethylsulfonyl fluoride, 50mM sodium fluoride, 1mM sodium vanadate, and 1% proteinase inhibitor cocktail III (Calbiochem, San Diego). Total protein concentrations were estimated using the Bradford assay (Bio-Rad, Hercules, California), with bovine serum albumin as a standard. For Western blot analysis, proteins were resolved on 10% or 4–20% gradient sodium dodecyl sulfate–polyacrylamide gels using an electrophoresis system (Mini-Protean II; Bio-Rad). The proteins were then transferred to nitrocellulose membranes (Hybond ECL; GE Healthcare Biosciences, Piscataway, New Jersey) using a mini-transblot electrophoretic transfer cell (Bio-Rad) at 80 V for 1 hour at room temperature. After transfer, the membranes were blocked and probed with antibodies at 4°C overnight as indicated by the manufacturer. Antibodies for p-ERK1/2, total ERK1/2, poly(ADP-ribose) polymerase (PARP), caspase-9, caspase-3, and survivin (Cell Signaling Technology, Danvers, Massachusetts) were used at a dilution of 1:1000; a monoclonal antibody against actin (Sigma-Aldrich Corp) was used at a dilution of 1:3000. The cyclin D1 antibody (Santa Cruz Biotechnology Inc, Santa Cruz, California) was used at a dilution of 1:400 and was incubated with membrane for 2 hours at room temperature.

TUNEL ASSAY

The PTC cells were treated with 2µM CI-1040 for 3 or 4 days and were trypsinized to single cells. Cisplatin, 1 mg/mL (Teva Parenteral Medicines Inc, Irvine, California), was used as a positive control for apoptosis. The TUNEL (terminal deoxynucleotidetransferase–mediated dUTP nick-end labeling) assay was performed using a fluorometric TUNEL system (DeadEnd; Promega Corp, Madison, Wisconsin) according to the manufacturer’s protocol. Apoptotic cells were analyzed using a FACSCalibur flow cytometer.

TUMOR GROWTH IN ATHYMIC MICE USING AN ORTHOTOPIC MODEL

Athymic Ncr-nu/nu mice, aged 8 to 12 weeks, were obtained from the National Cancer Institute (Frederick, Maryland) and were housed for at least a week after arrival. All experimental procedures and care for mice were performed in accordance with the Institutional Animal Care and Use Committee and the Department of Veterinary Medicine at The University of Texas M. D. Anderson Cancer Center.

The procedures for an orthotopic thyroid carcinoma model in mice have been described elsewhere.14 The PTC cells (1 × 10^6 cells in 0.8% sodium chloride solution) were injected into the thyroid glands of 8 to 10 mice per group, and mice were monitored...
CI-1040 was diluted daily for tumor growth. Two to 3 weeks after inoculation, mice were given 150 mg/kg of CI-1040 dissolved in Cremophor EL–95% ethanol (50:50) and diluted with water twice daily (300 mg/kg/d) by means of oral gavage for 5 consecutive days each week for 3 weeks. Tumor sizes were measured using calipers at the end of the 3 weeks (ex vivo after harvesting the tissue), and tumor volume (V) was calculated using the following formula: \(V = \frac{\text{length} \times \text{width}^2}{2} \). Control mice were given diluted Cremophor EL–95% ethanol (50:50) only.

STATISTICAL ANALYSIS

Statistical analysis was performed using the unpaired \(t \) test. \(P \leq .05 \) was considered to be statistically significant.

RESULTS

GI\(_{50}\) OF CI-1040 IN PTC CELLS

To monitor the effects of CI-1040 on inhibition of PTC cell growth, the GI\(_{50}\) was determined in PTC cells. Serial dilution (1:5) of CI-1040 was prepared, starting at 20\(\mu\)M to 3.2nM. After 3 days of incubation with varying concentrations of CI-1040, MTT assays were performed and cell growth was calculated. The GI\(_{50}\) for PTC cells with a BRAF mutation was 0.052\(\mu\)M; the GI\(_{50}\) for PTC cells with the RET/PTC1 rearrangement was 1.1\(\mu\)M (data not shown).

INHIBITION OF CELL GROWTH BY CI-1040

After the GI\(_{50}\) of CI-1040 in PTC cells was determined, PTC cells were divided into 3 groups, and each group was treated with a different concentration of CI-1040: approximately the GI\(_{50}\) (0.05\(\mu\)M for PTC cells with a BRAF mutation and 1\(\mu\)M for PTC cells with the RET/PTC1 rearrangement), 10-fold lower than the GI\(_{50}\) (0.005\(\mu\)M for PTC cells with a BRAF mutation and 0.1\(\mu\)M for PTC cells with the RET/PTC1 rearrangement), or 10-fold higher than the GI\(_{50}\) (0.5\(\mu\)M for PTC cells with a BRAF mutation and 10\(\mu\)M for PTC cells with the RET/PTC1 rearrangement). Using MTT assays, after 4 days of treatment with CI-1040, PTC cells with a BRAF mutation showed 90% growth inhibition at a 0.5\(\mu\)M dose, 59% inhibition at 0.05\(\mu\)M, and 27% inhibition at 0.005\(\mu\)M compared with cells treated with DMSO only (\(P < .001\) for all) (Figure 1). In PTC cells with the RET/PTC1 rearrangement, CI-1040 inhibited 86% of cell growth at 10\(\mu\)M (\(P = .001\)), 51% at 1\(\mu\)M (\(P < .001\)), and 11% at 0.1\(\mu\)M (\(P = .03\)) compared with cells treated with DMSO only (Figure 1). During 4-day treatment with CI-1040, GI-1040 was inhibited in the same percentage of PTC cells regardless of whether CI-1040 was added once (on day 0) or twice (on days 0 and 2) (data not shown). These results suggest that CI-1040 is a stable inhibitor that can inhibit the growth of PTC cells and that PTC cells bearing a BRAF mutation are significantly more sensitive to CI-1040 than their RET/PTC1 counterparts.

To determine the mechanism of cell growth inhibition in PTC cells after CI-1040 treatment, cell cycle analysis was performed after the PTC cells were treated with 1\(\mu\)M CI-1040 for 24 hours (Figure 2). More than 88% of PTC cells carrying the RET/PTC1 rearrangement were in G1 arrest, whereas 57% of untreated PTC cells were in the G1 phase. After CI-1040 treatment, only 5% of PTC cells were in the G2/M and S phases, whereas 23% of untreated cells were in the G2/M phase and 19% were in the S phase. Similar results were observed in PTC cells with a BRAF mutation. More than 85% of PTC cells with a BRAF mutation were in G1 arrest compared with untreated cells (61% in G1 phase). After CI-1040 treatment, only 7% of PTC cells with a BRAF mutation were in the G2/M phase and 6% were in the S phase, whereas 15% of untreated cells were in the G2/M phase and 23% were in the S phase. No significant change in the apoptotic phase was observed in either type of PTC cells after CI-1040 treatment for 24 hours (Figure 2).

DEPHOSPHORYLATION OF ERK1/2 IN PTC CELLS BY CI-1040

CI-1040 is a specific MEK1/2 inhibitor, and the downstream effectors of these kinases are ERK1/2. The ability of CI-1040 to decrease p-ERK1/2 was examined. The PTC cells were treated with different concentrations of CI-1040 for 1 hour, and the p-ERK1/2 was reduced at 0.1\(\mu\)M and was completely abolished at 1\(\mu\)M for PTC cells with a BRAF mutation (Figure 3A) or the RET/PTC1 rearrangement (Figure 3B). The duration of the dephosphorylation of ERK1/2 in PTC cells with a BRAF mutation lasted up to 96 hours (Figure 3A). For cells with the RET/PTC1 rearrangement, p-ERK1/2 became detectable as early as 6 hours after treatment with CI-1040, and p-ERK1/2 returned to its pretreatment level after 72 hours (Figure 3B).
The ability of CI-1040 to decrease the expression of p-ERK1/2 was observed to be the same whether CI-1040 was added to PTC cells once (at day 0) or twice (at days 0 and 2) during the 96- and 72-hour treatments (data not shown). Total ERK1/2 expression remained the same during all treatments. These data suggest that the downstream effects of CI-1040 treatment could effectively result in the dephosphorylation of ERK1/2. The dephosphorylation effect lasted longer in PTC cells with a \textit{BRAF} mutation than in those with the \textit{RET}/\textit{PTC1} rearrangement.

CASPASES AND PARP CLEAVAGES DETECTED IN PTC CELLS WITH A BRAF MUTATION AFTER CI-1040 TREATMENT

Survivin and XIAP are antiapoptotic proteins. The expression of these proteins decreases in cells that undergo apoptosis.13,14 The PTC cells were treated with 1µM CI-1040, and the expression of both proteins was analyzed using Western blotting. In PTC cells with either a \textit{BRAF} mutation or the \textit{RET}/\textit{PTC1} rearrangement, the expression of survivin was lost after treating the cells with CI-1040 for 16 hours (data not shown) and did not recover during observations extending up to 72 hours. No change in the expression of XIAP was observed in PTC cells treated with 1µM CI-1040 for up to 4 days (data not shown).

To further investigate the mechanism of cell growth inhibition in PTC cells with a \textit{BRAF} mutation by CI-1040, we evaluated expression of the caspase-9, caspase-3, and caspase-3 substrate PARP as indicators of apoptosis using Western blot analysis. The PTC cells with a \textit{BRAF} mutation showed cleaved caspase-9 after 1 day of treatment with CI-1040, cleaved caspase-3 after 2 days of treat-
ment, and cleaved PARP after 2 days of treatment (Figure 4A). The expression of cleaved PARP remained detectable for up to 4 days. In cells with the RET/PTC1 rearrangement, cleaved caspase-3 and cleaved PARP were not detected even after up to 4 days of treatment (data not shown).

In addition to the observed PARP cleavage on Western blots, the effects of CI-1040 on PTC cells were further tested using the TUNEL assay. In BRAF-mutated PTC cells, 11% and 24% of cells were apoptotic after treating with CI-1040 for 3 and 4 days, respectively (Figure 4B). In RET/PTC1–rearranged PTC cells, less than 1% of cells were apoptotic after treating with CI-1040 for up to 4 days. These data confirm the results observed on Western blots that BRAF-mutated PTC cells undergo apoptosis after CI-1040 treatment, whereas PTC cells with the RET/PTC1 rearrangement do not.

INHIBITION OF TUMOR GROWTH BY CI-1040 IN AN ORTHOTOPIC MOUSE MODEL

The inhibitory effects of CI-1040 were tested in vivo using an orthotopic mouse model. The PTC cells were inoculated in situ into the mouse thyroid. After 2 to 3 weeks, CI-1040 was given to these mice (see the “Methods” section) for 3 weeks. At the end of the 3 weeks, tumor sizes were measured and tumor volume was calculated (Table). After CI-1040 treatment, the mean tumor volume was smaller in mice with tumor from PTC cells carrying a BRAF mutation than in untreated (vehicle) mice (204.2 mm³ compared with 297.3 mm³, 31.3% reduction, $P < .001$). The mean tumor volume was also smaller in mice with tumor from PTC cells carrying the RET/PTC1 rearrangement than in untreated (vehicle) mice (368.5 mm³ compared with 701.9 mm³, 47.5% reduction, $P = .004$). No toxic effects were observed in any mice when they were treated with CI-1040. These data suggest that CI-1040 inhibits tumor growth in vivo in PTC cells having either the RET/PTC1 rearrangement or a BRAF mutation.

COMMENT

We examined the effects of the MEK1/2 inhibitor CI-1040 in PTC cells. We found that CI-1040 effectively inhibited PTC cell growth in vitro and in vivo. Previous studies have demonstrated that CI-1040 is a specific inhibitor of MEK1/2. After CI-1040 treatment in a colon cancer cell line, only the expression of p-ERK1/2 was affected, and no change in the expression of p-JNK, pP38, and pAKT was detected by means of Western blot analysis. In the present study, PTC cells with a BRAF mutation were sensitive to CI-1040 treatment in vitro, as the G_{50} in these cells is only 0.052 µM, which is in close agreement with the half-maximal inhibitory concentration of CI-1040.
CI-1040 to the enzymatic activity of pure MEK1 at 0.017µM. In contrast, at 1.1µM, the GI50 of PTC cells with the RET/PTC1 rearrangement was much higher.

At the molecular level, the expression of p-ERK1/2 was suppressed in both types of PTC cells after treatment with 1µM CI-1040 for 4 hours. The rapid dephosphorylation of ERK1/2 has been reported in other types of cancer, including the breast cancer cell line MDA-MB-231,16 malignant schwannoma cell lines,17 and colon cancer cell lines.15 The duration of the dephosphorylation of ERK1/2 by CI-1040 was different in different types of PTC cells. Dephosphorylation of ERK1/2 by CI-1040 lasted longer in PTC cells with a BRAF mutation (>96 hours) than in PTC cells with the RET/PTC1 rearrangement (approximately 6 hours). The regulation of p-ERK1/2 in these cells could explain this difference. In PTC cells with a BRAF mutation, the only known substrates of BRAF are MEK1/2, which activate ERK1/2. However, in PTC cells with the RET/PTC1 rearrangement, the resulting constitutive activated RET kinase is regulated by other signal transduction pathways (JNK, P38, or PLCγ) in addition to the RAF-MEK1/2-ERK1/2 pathway.9 Studies have shown that the expression of p-MEK1/2 is higher in PTC cells with a BRAF mutation than in PTC cells with the RET/PTC1 rearrangement.16 Thus, the ability of CI-1040 to dephosphorylate ERK1/2 in the presence of the BRAF mutation is a strong and dramatic one.

We also observed that CI-1040 was a stable in vitro inhibitor of PTC cell proliferation and suppressed p-ERK1/2 expression in PTC cells. After the dephosphorylation of ERK1/2, both types of PTC cells showed suppression of survivin 16 hours after CI-1040 treatment and G1 arrest at 24 hours. The reduction in survivin expression and G1 arrest have been observed in other types of cancer cells, including colon cancer cells,13 ovarian cancer cells,18 and malignant schwannoma cells.17 Other researchers19 have reported that G1 arrest induced by CI-1040 is only observed in cells with a BRAF mutation or a KRAS mutation and is not seen in cells carrying the wild-type BRAF.

In the present study, we observed G1 arrest in PTC cells with the RET/PTC1 rearrangement (with wild-type BRAF) and in those with a BRAF mutation. The events after G1 arrest seemed to be different in PTC cells with a BRAF mutation than in those with the RET/PTC1 rearrangement. As indicated by the detection of cleaved caspase-9, caspase-3, and cleaved PARP (3 or 4 days) and by TUNEL assay (3 or 4 days), CI-1040 induced apoptosis in PTC cells with a BRAF mutation after 24 hours of treatment. In PTC cells with the RET/PTC1 rearrangement, cytostasis was observed, activation of the caspase system was not detected, and no apoptotic cells were detected in TUNEL assay after up to 4 days of CI-1040 treatment. Because there are no available PTC cell lines carrying the RET/PTC2 and RET/PTC3 rearrangements, the effect of CI-1040 on these rearrangements was not tested. Although the mechanisms of the different responses to CI-1040 treatment by different types of PTC cells are unclear, we ruled out the involvement of p53 due to its mutation status in PTC cells. This p53-independent apoptosis induced by CI-1040 has been reported in malignant schwannoma cells by Mattingly et al.17 who showed that CI-1040 induced apoptosis in 3 different cell lines, 1 with a wild-type p53, another with a mutant p53, and the third with no p53 (p53 null).

CI-1040 was previously tested in a phase 2 trial in patients with advanced non–small-cell lung, breast, colon, or pancreatic cancer.9 No antitumor effect by CI-1040 was observed in these patients. A BRAF mutation was reported in 12% of patients with colon cancer,20 and in less than 10% of patients with breast cancer;21 no BRAF mutation was reported in patients with pancreatic cancer.22

Figure 4. Evidence of apoptosis in papillary thyroid carcinoma (PTC) cells with a BRAF mutation after CI-1040 treatment. A, Detection of cleaved caspases and cleaved poly (ADP-ribose) polymerase (PARP) in cells with a BRAF mutation after CI-1040 treatment. Cells with a BRAF mutation were treated with 1µM CI-1040 for 1 to 4 days. Expression of cleaved caspase-9, caspase-3, and cleaved PARP was detected by means of Western blot analysis. Cells treated with dimethyl sulfoxide (DMSO) only were used as controls. Actin was used as a loading control. B, The PTC cells with a BRAF mutation or the RET/PTC1 rearrangement were treated with 2µM CI-1040 for 3 or 4 days. Cells were harvested, and apoptotic cells were labeled using a fluorometric TUNEL (terminal deoxynucleotide transferase–mediated dUTP nick-end labeling) system. After analyzing cells using flow cytometry, the percentage of TUNEL-positive cells are shown. Cells treated with DMSO only (Mock) were used as a negative control, and cells treated with 40µM cisplatin for 48 hours were used as a positive control.
These BRAF mutation rates are relatively lower than those reported in PTC (29%-83% depending on the cohort being studied). No report of stratifying patients with BRAF mutations was described in the phase 2 trial.

We tested the effect of CI-1040 in vivo by measuring the tumor volume in an orthotopic mouse model to mimic the tumor microenvironment, as in the case of thyroid carcinomas occurring in patients. We observed moderate growth inhibition by CI-1040 in PTC tumors with either type of mutation (31.3% in BRAF and 47.5% in RET/PTC1). Moderate growth inhibition by CI-1040 was also observed by Liu et al using a xenograft mouse model, in which they observed 45% inhibition in KAT10 cells (a BRAF-mutated PTC cell line). At the dose of CI-1040 we were using, CI-1040 did not seem to be toxic to mice; as a result, no toxic effects were observed in mice. Although CI-1040 inhibited PTC cell growth in vitro, it was not as effective in vivo. Several factors may have contributed to this reduced effectiveness, including (1) the bioavailability of CI-1040 (CI-1040 dissolved completely in DMSO for in vitro study but dissolved only partially in Cremophor EL–95% ethanol for in vivo study), (2) the size of the tumor at the start of treatment, and (3) multiple mechanisms in vivo, such as angiogenesis and different growth factors and receptors. When PD184161, an analog of CI-1040, was tested in human liver cancer cell lines, it effectively inhibited tumor growth in mice when there was minimal tumor burden, but no inhibitory effect was observed when tumors were large at the time of treatment. Although the antitumor effect of CI-1040 in vivo was only moderate in mice in the present study, it was still statistically significant.

Based on these findings, we conclude that CI-1040 should be considered for testing in patients with PTC because both types of mutations in PTC respond equally to CI-1040 in vivo and because more than 70% of patients with PTC have either BRAF mutation or RET/PTC rearrangement, thus making this cancer an excellent system in which to test CI-1040. In addition, CI-1040 and other MEK1/2 inhibitors should be tested either alone or combined with other targeted compounds to further enhance the antitumor activity already observed.

Submitted for Publication: February 26, 2008; final revision received June 2, 2008; accepted July 6, 2008.

REFERENCES

Correction

Error in Text. The Original Article by Lee et al titled “Evaluation of Soft Palate Changes Using Sleep Videofluoroscopy in Patients With Obstructive Sleep Apnea,” published in the February 2009 issue of the Archives (2009;135[2]:168-172), contained a redundant sentence in the paragraph preceding the equation in the “Sleep Videofluoroscopy” subsection in the “Methods” section. The sentence and equation should have read:

The percentage change in the SP length or elongation was calculated as follows:

\[
\frac{\text{SP Length (Inspiratory Effort)} - \text{SP Length (Expiratory Effort)}}{\text{SP Length (Expiratory Effort)}} \times 100
\]