Transoral Robotic Surgery Alone for Oropharyngeal Cancer: An Analysis of Local Control | Head and Neck Cancer | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.

The specimen is inked in various colors for each margin, with orange representing "not true margin."

Weinstein GS, O’Malley BW Jr, Desai SC, Quon H. Transoral robotic surgery: does the ends justify the means?  Curr Opin Otolaryngol Head Neck Surg. 2009;17(2):126-13119342953PubMedGoogle ScholarCrossref
Weinstein GS, O’Malley BW Jr, Cohen MA, Quon H. Transoral robotic surgery for advanced oropharyngeal carcinoma.  Arch Otolaryngol Head Neck Surg. 2010;136(11):1079-108521079160PubMedGoogle ScholarCrossref
Moore EJ, Olsen KD, Kasperbauer JL. Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes.  Laryngoscope. 2009;119(11):2156-216419824067PubMedGoogle ScholarCrossref
O’Malley BW Jr, Weinstein GS, Snyder W, Hockstein NG. Transoral robotic surgery (TORS) for base of tongue neoplasms.  Laryngoscope. 2006;116(8):1465-147216885755PubMedGoogle ScholarCrossref
Weinstein GS, O’Malley BW Jr, Snyder W, Sherman E, Quon H. Transoral robotic surgery: radical tonsillectomy.  Arch Otolaryngol Head Neck Surg. 2007;133(12):1220-122618086963PubMedGoogle ScholarCrossref
National Comprehensive Cancer Network.  National Comprehensive Cancer Network Guidelines for Head and Neck Cancer, 2011 [registration required].
Bernier J, Cooper JS, Pajak TF,  et al.  Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501).  Head Neck. 2005;27(10):843-85016161069PubMedGoogle ScholarCrossref
Quon H, O’Malley BW Jr, Weinstein GS. Postoperative adjuvant therapy after transoral robotic resection for oropharyngeal carcinomas: rationale and current treatment approach.  ORL J Otorhinolaryngol Relat Spec. 2011;73(3):121-13021389744PubMedGoogle ScholarCrossref
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.  J Chronic Dis. 1987;40(5):373-3833558716PubMedGoogle ScholarCrossref
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP.STROBE Initiative.  The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.  Ann Intern Med. 2007;147(8):573-57717938396PubMedGoogle Scholar
Cooper JD. Randomized clinical trials for new surgical operations: square peg in a round hole?  J Thorac Cardiovasc Surg. 2010;140(4):743-74620850651PubMedGoogle ScholarCrossref
Cohen MA, Weinstein GS, O’Malley BW Jr, Feldman M, Quon H. Transoral robotic surgery and human papillomavirus status: Oncologic results.  Head Neck. 2011;33(4):573-58021425382PubMedGoogle ScholarCrossref
Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic.  Lancet Oncol. 2010;11(8):781-78920451455PubMedGoogle ScholarCrossref
Fletcher GH, Evers WT. Radiotherapeutic management of surgical recurrences and postoperative residuals in tumors of the head and neck.  Radiology. 1970;95(1):185-1884190460PubMedGoogle Scholar
Hamberger AD, Fletcher GH, Guillamondegui OM, Byers RM. Advanced squamous cell carcinoma of the oral cavity and oropharynx treated with irradiation and surgery.  Radiology. 1976;119(2):433-438817365PubMedGoogle Scholar
Peters LJ, Goepfert H, Ang KK,  et al.  Evaluation of the dose for postoperative radiation therapy of head and neck cancer: first report of a prospective randomized trial.  Int J Radiat Oncol Biol Phys. 1993;26(1):3-118482629PubMedGoogle ScholarCrossref
Ang KK, Trotti A, Brown BW,  et al.  Randomized trial addressing risk features and time factors of surgery plus radiotherapy in advanced head-and-neck cancer.  Int J Radiat Oncol Biol Phys. 2001;51(3):571-57811597795PubMedGoogle ScholarCrossref
Grant DG, Hinni ML, Salassa JR, Perry WC, Hayden RE, Casler JD. Oropharyngeal cancer: a case for single modality treatment with transoral laser microsurgery.  Arch Otolaryngol Head Neck Surg. 2009;135(12):1225-123020026820PubMedGoogle ScholarCrossref
Parsons JT, Mendenhall WM, Stringer SP,  et al.  Squamous cell carcinoma of the oropharynx: surgery, radiation therapy, or both.  Cancer. 2002;94(11):2967-298012115386PubMedGoogle ScholarCrossref
Steiner W. Experience in endoscopic laser surgery of malignant tumours of the upper aero-digestive tract.  Adv Otorhinolaryngol. 1988;39:135-1442455969PubMedGoogle Scholar
Haughey BH, Hinni ML, Salassa JR,  et al.  Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a United States multicenter study.  Head Neck. 2011;33(12):1683-169421284056PubMedGoogle ScholarCrossref
Steiner W, Ambrosch P, Hess CF, Kron M. Organ preservation by transoral laser microsurgery in piriform sinus carcinoma.  Otolaryngol Head Neck Surg. 2001;124(1):58-6711228455PubMedGoogle ScholarCrossref
White HN, Moore EJ, Rosenthal EL,  et al.  Transoral robotic-assisted surgery for head and neck squamous cell carcinoma: one- and 2-year survival analysis.  Arch Otolaryngol Head Neck Surg. 2010;136(12):1248-125221173375PubMedGoogle ScholarCrossref
Garden AS, Kies MS, Weber RS. To TORS or Not to TORS: but is that the question? Comment on “transoral robotic surgery for advanced oropharyngeal carcinoma”.  Arch Otolaryngol Head Neck Surg. 2010;136(11):1085-108721079161PubMedGoogle ScholarCrossref
Original Article
July 2012

Transoral Robotic Surgery Alone for Oropharyngeal Cancer: An Analysis of Local Control

Author Affiliations

Author Affiliations: Departments of Otorhinolaryngology–Head and Neck Surgery (Drs Weinstein, Newman, Chalian, and O’Malley), Radiation Oncology (Dr Lin), Hematology-Oncology (Drs Desai and Cohen), and Pathology and Laboratory Medicine (Drs Livolsi and Montone), University of Pennsylvania Medical Center, Philadelphia; Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (Dr Quon).

Arch Otolaryngol Head Neck Surg. 2012;138(7):628-634. doi:10.1001/archoto.2012.1166

Objective To evaluate local control following transoral robotic surgery (TORS) with the da Vinci Surgical System (Intuitive Surgical Inc) as a single treatment modality for oropharyngeal squamous cell carcinoma (OSCC).

Design Prospective, single-center, observational study.

Setting Academic university health system and tertiary referral center.

Patients Thirty adults with previously untreated OSCC.

Intervention Transoral robotic surgery with staged neck dissection as indicated.

Main Outcome Measures Local control and margin status.

Results Thirty patients were enrolled with previously untreated OSCC and no prior head and neck radiation therapy. Follow-up duration was at least 18 months. At the time of diagnosis, 9 tumors were T1 (30%); 16 were T2 (53%); 4 were T3 (13%); and 1 was T4a (3%). The anatomic sites of these primary tumors were tonsil in 14 (47%), tongue base in 9 (30%), glossotonsillar sulcus in 3 (10%), soft palate in 3 (10%), and oropharyngeal wall in 1 (3%). There was only 1 patient (3%) who had a positive margin after primary resection; further resection achieved a final negative margin. Perineural invasion was noted in 3 tumors (10%). No patient received postoperative adjuvant therapy. At a mean follow-up of 2.7 years (range, 1.5-5.1 years), there was 1 patient with local failure (3%).

Conclusion As the only modality used for treatment of pathologically low-risk OSCCs, TORS provides high local control and is associated with low surgical morbidity.