Comparison of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Ciliary Beat Frequency Activation by the CFTR Modulators Genistein, VRT-532, and UCCF-152 in Primary Sinonasal Epithelial Cultures | Adolescent Medicine | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
Möller  W, Häussinger  K, Ziegler-Heitbrock  L, Heyder  J.  Mucociliary and long-term particle clearance in airways of patients with immotile cilia.  Respir Res. 2006;7:10.PubMedGoogle ScholarCrossref
2.
Trout  L, King  M, Feng  W, Inglis  SK, Ballard  ST.  Inhibition of airway liquid secretion and its effect on the physical properties of airway mucus.  Am J Physiol. 1998;274(2, pt 1):L258-L263.PubMedGoogle Scholar
3.
Blount  A, Zhang  S, Chestnut  M,  et al.  Transepithelial ion transport is suppressed in hypoxic sinonasal epithelium.  Laryngoscope. 2011;121(9):1929-1934.PubMedGoogle Scholar
4.
Virgin  FW, Azbell  C, Schuster  D,  et al.  Exposure to cigarette smoke condensate reduces calcium activated chloride channel transport in primary sinonasal epithelial cultures.  Laryngoscope. 2010;120(7):1465-1469.PubMedGoogle ScholarCrossref
5.
Zhang  S, Fortenberry  JA, Cohen  NA, Sorscher  EJ, Woodworth  BA.  Comparison of vectorial ion transport in primary murine airway and human sinonasal air-liquid interface cultures, models for studies of cystic fibrosis, and other airway diseases.  Am J Rhinol Allergy. 2009;23(2):149-152.PubMedGoogle ScholarCrossref
6.
Cohen  NA, Zhang  S, Sharp  DB,  et al.  Cigarette smoke condensate inhibits transepithelial chloride transport and ciliary beat frequency.  Laryngoscope. 2009;119(11):2269-2274.PubMedGoogle ScholarCrossref
7.
Mall  MA.  Role of the amiloride-sensitive epithelial Na+ channel in the pathogenesis and as a therapeutic target for cystic fibrosis lung disease.  Exp Physiol. 2009;94(2):171-174.Google ScholarCrossref
8.
Virgin  FW, Rowe  SM, Wade  MB,  et al Extensive surgical and comprehensive postoperative medical management for cystic fibrosis chronic rhinosinusitis.  Am J Rhinol Allergy.2012;26(1):70-75.Google ScholarCrossref
9.
Alexander  NS, Hatch  N, Zhang  S,  et al.  Resveratrol has salutary effects on mucociliary transport and inflammation in sinonasal epithelium.  Laryngoscope. 2011;121(6):1313-1319.PubMedGoogle ScholarCrossref
10.
Azbell  C, Zhang  S, Skinner  D, Fortenberry  J, Sorscher  EJ, Woodworth  BA.  Hesperidin stimulates cystic fibrosis transmembrane conductance regulator-mediated chloride secretion and ciliary beat frequency in sinonasal epithelium.  Otolaryngol Head Neck Surg. 2010;143(3):397-404.PubMedGoogle ScholarCrossref
11.
Zhang  S, Smith  N, Schuster  D,  et al.  Quercetin increases cystic fibrosis transmembrane conductance regulator-mediated chloride transport and ciliary beat frequency: therapeutic implications for chronic rhinosinusitis.  Am J Rhinol Allergy. 2011;25(5):307-312.PubMedGoogle ScholarCrossref
12.
Virgin  F, Zhang  S, Schuster  D,  et al.  The bioflavonoid compound, sinupret, stimulates transepithelial chloride transport in vitro and in vivo.  Laryngoscope. 2010;120(5):1051-1056.PubMedGoogle Scholar
13.
Accurso  FJ, Rowe  SM, Clancy  JP,  et al.  Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation.  N Engl J Med. 2010;363(21):1991-2003.PubMedGoogle ScholarCrossref
14.
Fischer  H, Fukuda  N, Barbry  P, Illek  B, Sartori  C, Matthay  MA.  Partial restoration of defective chloride conductance in DeltaF508 CF mice by trimethylamine oxide.  Am J Physiol Lung Cell Mol Physiol. 2001;281(1):L52-L57.PubMedGoogle Scholar
15.
Alexander  NS, Blount  A, Zhang  S,  et al.  Cystic fibrosis transmembrane conductance regulator modulation by the tobacco smoke toxin acrolein.  Laryngoscope. 2012;122(6):1193-1197.PubMedGoogle ScholarCrossref
16.
Mall  M, Wissner  A, Seydewitz  HH,  et al.  Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes.  Br J Pharmacol. 2000;130(8):1884-1892.PubMedGoogle ScholarCrossref
17.
Marini  H, Minutoli  L, Polito  F,  et al.  OPG and sRANKL serum concentrations in osteopenic, postmenopausal women after 2-year genistein administration.  J Bone Miner Res. 2008;23(5):715-720.PubMedGoogle ScholarCrossref
18.
Bitto  A, Polito  F, Atteritano  M,  et al Genistein aglycone does not affect thyroid function: results from a three-year, randomized, double-blind, placebo-controlled trial.  J Clin Endocrinol Metab.2010;95(6):3067-3072.Google ScholarCrossref
19.
Van Goor  F, Straley  KS, Cao  D,  et al.  Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules.  Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1117-L1130.PubMedGoogle ScholarCrossref
20.
Pyle  LC, Ehrhardt  A, Mitchell  LH,  et al.  Regulatory domain phosphorylation to distinguish the mechanistic basis underlying acute CFTR modulators.  Am J Physiol Lung Cell Mol Physiol. 2011;301(4):L587-L597.PubMedGoogle ScholarCrossref
21.
Van Goor  F, Hadida  S, Grootenhuis  PD,  et al.  Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770.  Proc Natl Acad Sci U S A. 2009;106(44):18825-18830.PubMedGoogle ScholarCrossref
22.
Woodworth  BA, Tamashiro  E, Bhargave  G, Cohen  NA, Palmer  JN.  An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers.  Am J Rhinol. 2008;22(3):235-238.PubMedGoogle ScholarCrossref
23.
Khalid  AN, Woodworth  BA, Prince  A,  et al.  Physiologic alterations in the murine model after nasal fungal antigenic exposure.  Otolaryngol Head Neck Surg. 2008;139(5):695-701.PubMedGoogle ScholarCrossref
24.
Bhargave  G, Woodworth  BA, Xiong  G, Wolfe  SG, Antunes  MB, Cohen  NA.  Transient receptor potential vanilloid type 4 channel expression in chronic rhinosinusitis.  Am J Rhinol. 2008;22(1):7-12.PubMedGoogle ScholarCrossref
25.
Antunes  MB, Woodworth  BA, Bhargave  G,  et al.  Murine nasal septa for respiratory epithelial air-liquid interface cultures.  Biotechniques. 2007;43(2):195-196, 198, 200.PubMedGoogle ScholarCrossref
26.
Woodworth  BA, Antunes  MB, Bhargave  G, Palmer  JN, Cohen  NA.  Murine tracheal and nasal septal epithelium for air-liquid interface cultures: a comparative study.  Am J Rhinol. 2007;21(5):533-537.PubMedGoogle ScholarCrossref
27.
Sears  CL, Firoozmand  F, Mellander  A,  et al.  Genistein and tyrphostin 47 stimulate CFTR-mediated Cl− secretion in T84 cell monolayers.  Am J Physiol. 1995;269(6, pt 1):G874-G882.PubMedGoogle Scholar
28.
Pyle  LC, Fulton  JC, Sloane  PA,  et al.  Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue.  Am J Respir Cell Mol Biol. 2010;43(5):607-616.Google Scholar
29.
Wang  F, Zeltwanger  S, Yang  IC, Nairn  AC, Hwang  TC.  Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating: evidence for two binding sites with opposite effects.  J Gen Physiol. 1998;111(3):477-490.PubMedGoogle ScholarCrossref
30.
Al-Nakkash  L, Hwang  TC.  Activation of wild-type and deltaF508-CFTR by phosphodiesterase inhibitors through cAMP-dependent and -independent mechanisms.  Pflugers Arch. 1999;437(4):553-561.PubMedGoogle ScholarCrossref
Original Investigation
August 2013

Comparison of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Ciliary Beat Frequency Activation by the CFTR Modulators Genistein, VRT-532, and UCCF-152 in Primary Sinonasal Epithelial Cultures

Author Affiliations
  • 1Division of Otolaryngology, Department of Surgery, University of Alabama at Birmingham, Birmingham
  • 2Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham
  • 3Department of Medicine, University of Alabama at Birmingham, Birmingham
JAMA Otolaryngol Head Neck Surg. 2013;139(8):822-827. doi:10.1001/jamaoto.2013.3917
Abstract

Importance  Pharmacologic activation of mucociliary clearance (MCC) represents an emerging therapeutic strategy for patients with chronic rhinosinusitis, even in the absence of congenital mutations of the CFTR gene. Drug discovery efforts have identified small molecules that activate the cystic fibrosis transmembrane conductance regulator (CFTR), including potentiators under development for treatment of cystic fibrosis.

Objective  To evaluate the properties of CFTR modulators and their effects on ciliary beat frequency (CBF) in human sinonasal epithelium (HSNE).

Design  Primary HSNE cultures (wild type and F508del/F508del) were used to compare stimulation of CFTR-mediated Cl conductance and CBF by the CFTR modulators genistein, VRT-532, and UCCF-152.

Main Outcomes and Measures  Increase in CFTR-dependent anion transport and CBF.

Results  HSNE cultures were analyzed using pharmacologic manipulation of ion transport (change in short-circuit current [∆ISC]) and high-speed digital imaging (CBF). Activation of CFTR-dependent anion transport was significantly different among agonists (P < .001), with genistein exerting the greatest effect (mean [SD] ∆ISC, genistein, 23.1 [1.8] μA/cm2 > VRT-532, 8.1 [1.0] μA/cm2 > UCCF-152, 3.4 [1.4] μA/cm2 > control, 0.7 [0.2] μA/cm2; Tukey-Kramer P < .05) in the absence of forskolin. Genistein and UCCF-152 augmented CBF (under submerged conditions) significantly better (Tukey-Kramer P < .05) than cells treated with VRT-532 or dimethyl sulfoxide vehicle control (mean [SD] fold change over baseline, genistein, 1.63 [0.06]; UCCF-152, 1.56 [0.06]; VRT-532, 1.38 [0.08]; control, 1.27 [0.02]). Activation of CBF was blunted in F508del/F508del HSNE cultures.

Conclusions and Relevance  The degree of CBF stimulation was not dependent on the magnitude of Cl secretion, suggesting that different mechanisms of action may underlie MCC activation by these small molecule potentiators. Agents that activate both CFTR-dependent ISC and CBF are particularly attractive as therapeutics because they may address 2 independent pathways that contribute to deficient MCC in chronic rhinosinusitis.

×