Basic Fibroblast Growth Factor and Insulinlike Growth Factor I Support the Growth of Human Septal Chondrocytes in a Serum-Free Environment | Pathology and Laboratory Medicine | JAMA Otolaryngology–Head & Neck Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Brittberg  MLindahl  ANilsson  AOhlsson  CIsaksson  OPeterson  L Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.  N Engl J Med. 1994;331889- 895Google ScholarCrossref
Puelacher  WCMooney  DLanger  RUpton  JVacanti  JPVacanti  CA Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes.  Biomaterials. 1994;15774- 778Google ScholarCrossref
Vacanti  CALanger  RSchloo  BVacanti  JP Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation.  Plast Reconstr Surg. 1991;88753- 759Google ScholarCrossref
Guyuron  BFriedman  A The role of preserved autogenous cartilage graft in septorhinoplasty.  Ann Plast Surg. 1994;32255- 260Google ScholarCrossref
Bujia  JSittinger  MWilmes  EHammer  C Effect of growth factors on cell proliferation by human nasal septal chondrocytes cultured in monolayer.  Acta Otolaryngol (Stockh). 1994;114539- 543Google ScholarCrossref
Quatela  VCSherris  DARosier  RN The human auricular chondrocyte: responses to growth factors.  Arch Otolaryngol Head Neck Surg. 1993;11932- 37Google ScholarCrossref
Trippel  SBWroblewski  JMakower  AMWhelan  MCSchoenfeld  DDoctrow  SR Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor.  J Bone Joint Surg Am. 1993;75177- 189Google Scholar
Luan  YPraul  CAGay  CVLeach  RM  Jr Basic fibroblast growth factor: an autocrine growth factor for epiphyseal growth plate chondrocytes.  J Cell Biochem. 1996;62372- 382Google ScholarCrossref
Shida  JJingushi  SIzumi  TIwaki  ASugioka  Y Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats in vivo.  J Orthop Res. 1996;14265- 272Google ScholarCrossref
Trippel  SB Growth factor actions on articular cartilage.  J Rheumatol Suppl. 1995;43129- 132Google Scholar
O'Keefe  RJCrabb  IDPuzas  JERosier  RN Effects of transforming growth factor-β1 and fibroblast growth factor on DNA synthesis in growth plate chondrocytes are enhanced by insulin-like growth factor-I.  J Orthop Res. 1994;12299- 310Google ScholarCrossref
Bujia  JPitzke  PWilmes  EHammer  C Culture and cryopreservation of chondrocytes from human cartilage: relevance for cartilage allografting in otolaryngology.  ORL J Otorhinolaryngol Relat Spec. 1992;5480- 84Google ScholarCrossref
Rosselot  GReginato  AMLeach  RM Development of a serum-free system to study the effect of growth hormone and insulinlike growth factor-I on cultured postembryonic growth plate chondrocytes.  In Vitro Cell Dev Biol. 1992;28A235- 244Google ScholarCrossref
Koch  RJGoode  RLSimpson  GT Serum-free keloid fibroblast cell culture: an in vitro model for the study of aberrant wound healing.  Plast Reconstr Surg. 1997;991094- 1098Google ScholarCrossref
von der Mark  KGauss  Vvon der Mark  HMuller  P Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture.  Nature. 1977;267531- 532Google ScholarCrossref
Benya  PDShaffer  JD Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels.  Cell. 1982;30215- 224Google ScholarCrossref
Abbott  JHoltzer  H The loss of phenotypic traits by differentiated cells, 3: the reversible behavior of chondrocytes in primary cultures.  J Cell Biol. 1966;28473- 487Google ScholarCrossref
Guerne  PASublet  ALotz  M Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts.  J Cell Physiol. 1994;158476- 484Google ScholarCrossref
Wroblewski  JEdwall-Arvidsson  C Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation.  J Bone Miner Res. 1995;10735- 742Google ScholarCrossref
Nataf  VTsagris  LDumontier  MFBonaventure  JCorvol  M Modulation of sulfated proteoglycan synthesis and collagen gene expression by chondrocytes grown in the presence of bFGF alone or combined with IGF1.  Reprod Nutr Dev. 1990;30331- 342Google ScholarCrossref
Harrison  ET  JrLuyten  FPReddi  AH Osteogenin promotes reexpression of cartilage phenotype by dedifferentiated articular chondrocytes in serum-free medium.  Exp Cell Res. 1991;192340- 345Google ScholarCrossref
Original Article
December 1998

Basic Fibroblast Growth Factor and Insulinlike Growth Factor I Support the Growth of Human Septal Chondrocytes in a Serum-Free Environment

Author Affiliations

From the Wound Healing and Tissue Engineering Laboratory, Division of Otolaryngology–Head and Neck Surgery, Stanford University Medical Center, Stanford, Calif.

Arch Otolaryngol Head Neck Surg. 1998;124(12):1325-1330. doi:10.1001/archotol.124.12.1325

AS CELL culture techniques advance, laboratory-based tissue engineering of human cartilage is slowly evolving into a reality. In 1994, Brittberg et al1 announced that laboratory-cultured autologous articular chondrocytes could be used to repair deep cartilage surface defects in the human knee. In the fall of 1995, Vacanti and Langer awed the public with the televised image of a nude mouse carrying a subcutaneously implanted, tissue-engineered human auricle on its dorsum, an auricle that their laboratories had produced by seeding articular cartilage on a molded bioresorbable scaffolding.2,3

Reconstructive surgeons generally agree that native septal cartilage is an optimal implant for repair of cartilaginous defects. Its firmness and nonpliability lend it superior qualities for reconstructive work. Guyuron and Friedman4 reported going as far as banking septal cartilage removed from patients undergoing septoplasty to preserve the excised tissue for future autologous use.